

Pathways Study

Evaluation and Impact Analysis

Todd Schatzki Principal

April 15, 2021

Agenda

- Overview of Assignment and Approach
- Model Structure and Mechanics
- Inputs, Assumptions, and Scenarios Evaluated

Overview of Assignment and Approach

Assignment

- Analysis Group (AG) has been asked to evaluate proposed alternative approaches to a more decarbonized future grid and compare them to continuation of the current rules ("Status Quo"). Thus, we will evaluate three approaches, or cases:
 - Status Quo
 - Forward Clean Energy Market (FCEM) / Integrated Clean Capacity Market (ICCM)
 - Net Carbon Pricing
- Our work will include quantitative and qualitative analysis of each approach with the goal of identifying important differences between them
 - We will focus on factors that are most relevant to differentiating between these approaches, such as environmental and economic outcomes, and how each approach incents desired resource mix changes
 - Quantitative analysis will aim to capture key differences in environmental and economic outcomes, but, in practice, will not capture all differences
 - Qualitative analysis will identify and assess differences between approaches that are not captured by the quantitative analysis

Assignment

- The quantitative modeling of each approach based on cases designed to illustrate key differences between each approach:
 - Compare approaches under common "central" assumptions and also consider alternative scenarios reflecting different common assumptions and particular design choices
 - Illustrate the mechanisms by which each approach incents changes in investment or behavior that result in different market outcomes, drawing on examples from model runs
 - Quantitative work will focus on outcomes most relevant to understanding the choice regulatory approach to incenting desired resource mix changes – as a result, certain factors important to future grid outcomes, such as reliability outcomes, will be less of a focus
- Our work is intended to inform stakeholders about the proposed approaches

Quantitative Analysis Approach

- Evaluate outcomes of each approach starting with a central case
 - Each approach will be analyzed assuming the same market conditions and emission targets
 - Intention is to analyze using a common set of assumptions so that differences in outcomes across scenarios reflect differences in approaches, not other factors
- Evaluate market outcomes under additional scenarios.
 - Some scenarios will test sensitivity to different assumptions about market conditions, policy targets and other factors common to all approaches
 - Other scenarios will test the sensitivity of outcomes to design decisions for particular approaches
- Modeling inputs, assumptions, and scenarios will be informed by discussion with and feedback from stakeholders
 - Where feasible and sensible, we will align assumptions with the Future Grid Reliability Study (FGRS)

Overview of Schedule and Process

- Study will proceed in stages to:
 - Align AG, ISO and stakeholders on study objectives
 - Gather stakeholder input on design of approaches, input assumptions and desired scenarios
 - Provide preliminary results to obtain stakeholder feedback
 - Develop final study findings, including final report
- Process will proceed according to the following proposed schedule:

- May-June, 2021 Discuss approach designs, model inputs, and scenarios

- July-August, 2021 Simulation modeling (potential for additional stakeholder

discussion of inputs)

- October, 2021 Preliminary results

November, 2021 Detailed central case results

- **December, 2021** Preliminary scenario results

February, 2021 Report delivered

Model Structure and Mechanics

Overview of Modeling Approach: Model Components

- Analysis will use a multi-module model to simulate the New England electricity markets:
 - Energy markets, including proposed net carbon pricing
 - Capacity markets
 - Proposed clean energy market frameworks
- Models will reflect current market structures and rules, and not include potential modifications that may occur in the future
 - Application of MOPR will be determined
- Model follows two steps:
 - 1. Determine the future resource mix using a "capacity expansion" model
 - Analyze outcomes in energy market and capacity market, reflecting approach taken to meeting decarbonization target (status quo, FCEM or net carbon pricing)

Overview of Modeling Approach: Model Components

Inputs and Assumptions

- Existing resource going-forward costs
- Costs of new entry
- Variable O&M
- Heat rates
- Load
- Etc.

(Described in further detail in next section)

Results

EAS Market

- Payments
- Production costs
- LMPs
- Carbon prices
- Emissions
- Generation mix

Forward Market

- Capacity prices
- CEC prices
- CEC payments

Common Inputs and Assumptions

- Common set of central case assumptions across all approaches
 - Regional carbon emission target
 - Hourly load shapes, reflecting assumed electrification of transportation and heating
 - Existing generation portfolio (and their operating parameters and costs)
 - Renewable generation profiles (reflecting weather patterns)
 - Fuel and non-carbon emissions prices
 - Existing state policies, including RPS
- Different approaches to achieve regional carbon emission target beyond central case state policies:
 - Status quo Incremental state policies to meet target, with long-term contracts
 - FCEM / ICCM Procurement of Clean Energy Certificates (CEC) to meet regional target
 - Net Carbon Pricing Set carbon price to meet regional target
- Market footprint will include ISO-NE and NYISO, with supply curve for HQ

Proposed Study Outcomes

- This study will focus on differences in outcomes across approaches to give insight into how outcomes may differ under each approach
- Potential quantitative outcomes include:
 - Customer payments
 - Total production costs
 - Wholesale energy and reserve prices (LMPs)
 - Capacity prices
 - Environmental prices (carbon, CEC)
 - Emissions
 - Resource mix, by technology type (MW, MWh)
- Qualitative analysis
 - Quantitative analysis will capture some but not all differences in approaches, while qualitative analysis will aim to identify and evaluate other consequential differences in outcomes across approaches

Inputs, Assumptions, and Scenarios Analyzed

Approach to Inputs and Assumptions

- The model requires many inputs and assumptions, some involving substantial detail
 - Where possible and sensible, we will align assumptions with the FGRS
 - Other assumptions will be developed with the aim of capturing future market and system conditions to provide the most suitable basis for comparing approaches
- Central case inputs will be developed first, and scenario analysis will be performed based on changes to the central case assumptions
 - Scenario analysis will generally reflect changes to either approach design or market conditions
- The following slides provides an overview of key assumptions and inputs, and provide preliminary thinking on assumptions in certain areas
- We welcome stakeholder feedback on inputs and assumptions, and final inputs and assumptions will reflect feedback received from stakeholders

Modeling Inputs and Assumptions

Study Parameters

- Year(s) studied
- Regional carbon target (applicable to each approach)

Electricity Markets

- Current resource mix, known additions/retirements
- Fuel prices
- RGGI and non-carbon emissions pricing
- Import/export assumptions
- Load shapes (hourly)
 - Electrification (transportation, home heating) assumptions
 - Energy efficiency assumptions
- Renewable hourly resource profiles (e.g., hydro, onshore wind, offshore wind, solar)
- Storage resource specifications

Capacity Markets

- Going forward costs (fixed operating costs for existing resources)
- Technology-specific cost of new entry (CONE) (amortized capital and fixed operating costs)
- MOPR (i.e., will MOPR be applied or not applied)

Approach Inputs and Assumptions

State Policies

 Existing policies to be assumed across cases, such as RPS

Status Quo

- Incremental policies (e.g., incremental RPS) needed to meet assumed regional carbon target and their specific implications for technology mix and location
- Current and future long-term contracts (implications for costs)

Net Carbon Pricing

- Carbon price (to achieve regional carbon target)
- Leakage rules

FCEM / ICCM

- Design:
 - Integration of FCEM into FCM
 - Eligibility of resources for CECs
 - Static CECs (potential for dynamic scenario)
- Inputs:
 - State-level demand for CECs (to achieve the regional carbon target)
 - Resource-level CEC offer quantity
- Allocation of costs and settlement:
 - Non-compliance penalty rates
 - Banking of CECs across years

Modeling Year(s) Studied

- Preliminary thinking to use target year of 2040
 - Consistent with FGRS
 - Capacity expansion model will provide resource mix for intermediate years
 - Potential to include full results for other years or certain policies/scenarios, particularly if we determine that findings differ for intermediate years
- Analysis will assume a 'weather normal' year
 - Preliminary thinking is to use 2019, modified to reflect future changes

State Policies

- Many current states policies:
 - RPS Current RPS targets reflect both legislation and executive orders
 - Clean Energy Standard (CES) In effect, expands to include other non-emitting sources
 - Procurements zero carbon resources (CT), off-shore wind (MA, RI), etc.
 - Others Clean Peak Standard (MA), cap and net metering (behind the meter changes in load), trade (MA), solar targets and policies (e.g., rebates CT, SMART MA)
- Policies vary in statutory mandate:
 - Some policies explicitly specified in statute
 - Some policies implemented to achieve statutory target
 - Some policies implemented via executive order

Current State Policies

Aggregate, Regional Impact of Various State Policies

 Existing policies vary across states in terms of quantity of targeted clean/renewable energy (and eligible technologies)

2040 Requirement	Quantity	(% c	of Load)
------------------	-----------------	------	----------

		<u> </u>
State	RPS Only	RPS + CES + Other
Connecticut	48%	100%
Maine	80%	80%
Massachusetts	57%	74%
New Hampshire	25%	25%
Rhode Island	39%	100%
Vermont	75%	75%
Total (load weighted)	54%	77%

Note: Estimates by AG based on review of state legislative mandates. "CES + Other" includes Massachusetts Clean Energy Standard, Massachusetts Alternative Energy Portfolio Standard, and Executive Orders in both Connecticut and Rhode Island. Load weighting based on ISO-NE's 2029 load forecast, net of behind the meter solar and energy efficiency.

State Policies

- State policies assumed with each approach need to reflect a reasonable mix of existing policies, with alternative approaches being studied – i.e., status quo, FCEM / ICCM, net carbon pricing – achieving incremental carbon reductions to achieve regional carbon target
 - If central case policies achieve too many reductions, analysis of approaches will not yield useful information for assessment
- Potential options
 - 1. Include only outcomes of existing procurements and planned procurement (i.e., no RPS)
 - Include a scaled down version of current RPS
 - Current RPS (e.g., as represented on prior slide)
- Preliminary observations
 - #1 (existing procurements) provides the opportunity to most clearly differentiate between the three approaches
 - #2 (scaled-down RPS) may balance desire to account for existing state policies and allow the study to provide useful information to evaluate the approaches
 - #3 (current RPS) may offer too little incremental reductions to meaningfully evaluate the approaches
- We look forward to input from stakeholders on a sensible mix of assumptions

Potential Scenarios

- Across approaches:
 - Alternative regional carbon target
 - Alternative levelized costs of new entry for renewable resources (given uncertainty in cost trajectory)
 - Alternative load forecasts (e.g., different levels of electrification of heating, transportation)
 - Alternative natural gas price projection
 - Remove existing (central case) state policies
 - Alternative MOPR assumption (removal/inclusion depending on central case assumption)
- Status Quo
 - Alternative costs of long-term renewable contract procurement
- FCEM / ICCM
 - "Dynamic" pricing (may be studied in an abridged fashion)
 - Alternative penalty rate
- Net Carbon Pricing
 - Leakage rules
- We look forward to input from stakeholders on a sensible mix of scenarios
 - Timely input will increase likelihood that model is capable of evaluating or can reasonably evaluate the desired scenario

Next Steps

- May
 - Review feedback from stakeholders
 - Provide preliminary proposal for assumptions and inputs
- June
 - Review any additional feedback from stakeholders
 - Present finalized assumptions and inputs

Contact

Todd Schatzki
Principal
617-425-8250
Todd.Schatzki@analysisgroup.com