FCEM in New England Feedback on ISO-NE Questions

ON BEHALF OF NRG ENERGY AND OTHER STAKEHOLDERS

MARCH 18, 2021

PETE FULLER & DAVID O'CONNOR

Today's Topics

 Feedback on Questions posed by ISO-NE at 'Pathways' meeting on February 18

 Today's presentation is being offered by consultants to NRG Energy, based on consultations with and input from a group of stakeholders representing diverse interests

Initial Observations

- We welcome insights from ISO and Analysis Group as well as other stakeholders
- Draw a clear distinction between assumptions and design specifications needed for the Pathways <u>modeling</u> effort, as opposed to the specifications needed for ultimate <u>implementation</u> of FCEM/ICCM
 - Pathways <u>modeling</u> needs to capture the essence of FCEM/ICCM and how it differs from contract-based procurements and net carbon pricing. Actual <u>implementation</u> will require additional detail and mechanisms to address real-world dynamics
- Wherever we refer to "clean energy" below it should be understood to refer to the clean attribute, not the energy itself

ISO-NE Questions (1)

- What resources can sell "clean energy?"
 - For <u>modeling</u>, limit to wind, solar, hydro and nuclear as the major carbon-free resource types.
- Does it include imports?
 - Yes, as long as energy originates at a specific resource that is eligible under the same criteria as resources internal to New England. Probably should be included in modeling.

ISO-NE Questions (2)

- Apply to energy storage (eg, pumped hydro, batteries)?
 - Yes, subject to demonstration (physical or contractual) that storage is charged with energy meeting the criteria above.
- Would credits be "dynamic?" If yes, how would this work?
 - Dynamic credits, or some form of time-varying value, should be explored for <u>implementation</u> to capture the value of controlling the timing of energy production/injection. Pathways <u>modeling</u> should proceed initially on the basis of a non-dynamic credit (though perhaps with accommodations in the model for later inclusion).

ISO-NE Questions (3)

- Is there a cap on the quantity of "clean energy" a resource can sell forward?
 - For <u>modeling</u>, assume eligible clean/renewable resources offer their P50 (median) output.
- If yes, how would this cap be determined?
 - For <u>implementation</u>, upper limit on sell offer would be based on weather data and technical capabilities. Resources could offer less based on risk tolerances.

ISO-NE Questions (4)

- Is there a qualification process?
 - For <u>implementation</u> we anticipate a process very similar to FCM and a similar 'physical' paradigm for attributes under FCEM/ICCM.
- Is there a single "clean energy" product, or are there potentially multiple products (and if so, what are they)?
 - The market will be most efficient with a single product. For <u>modeling</u>, see 'ISO-NE Questions (1).' For <u>implementation</u> States will need to ensure their demand participation in FCEM/ICCM does not interfere with statutory and other requirements for clean/renewable energy.

ISO-NE Questions (5)

- What are the settlement implications of producing more or less "clean energy" during the commitment period than was sold forward?
 - The forward sale should encompass an obligation to deliver the specified quantity of attributes or secure replacement credits through bilateral or auction-based transactions. A 'balancing' auction might be used to create a valid price to settle shortfalls. Absent a robust means to create a market-based 'real time' price for credits there should be an administrative penalty for under-delivering and failing to secure replacement credits. It is not clear whether or to what extent this needs to be specified for <u>modeling</u> purposes.

ISO-NE Questions (6)

- Is there a "penalty" for the non-delivery of "clean energy?" If so, how is it determined?
 - There should definitely be a performance incentive as part of a FCEM/ICCM obligation. If a 'balancing' auction isn't effective to create a valid price to settle shortfalls, there should be an administrative penalty for under-delivering and failing to secure replacement credits. Perhaps set at some multiplier of the clean energy credit clearing price, and/or a minimum level set administratively, similar to Alternative Compliance Payments (ACP) under RPS programs. It is not clear whether or to what extent this needs to be specified for modeling purposes.

ISO-NE Questions (7)

- Are there opportunities to buy/sell credits during the commitment period so that a resource can align its forward and spot positions?
 - Definitely. In addition to bilateral trading, there should be at least one balancing auction after the close of the commitment period. Other auction-based opportunities within the commitment period could be considered. It is not clear whether or to what extent this needs to be specified for modeling purposes.
- Can a resource without an FCEM obligation buy/sell credits?
 - Yes, a resource can sell credits subject to meeting eligibility criteria. Similarly, a resource with an FCEM obligation that 'over-produces'

ISO-NE Questions (8)

- Are there any exemptions that would allow resources to avoid covering their forward position during the commitment period?
 - Generally no, but who should bear the risk of a region-wide shortfall in clean energy, e.g., in the event weather is such that regional production of clean energy credits is less than the amount of FCEM/ICCM obligations?
- Can credits be banked across commitment periods?
 - Not clear whether or to what extent necessary for <u>modeling</u>. For <u>implementation</u>, will depend on a number of other parameters, such as product definition, balancing opportunities, and demand levels relative to supply.

ISO-NE Questions (9)

- Can a resource provide "clean energy" under the FCEM and also qualify for credits/certificates under current state programs?
 - Yes. We assume the ultimate FCEM/ICCM design must be able to coexist with State RPS and similar programs. For <u>modeling</u>, suggest several scenarios/sensitivities:
 - Assume no RPS value outside of FCEM/ICCM
 - Assume Class I REC value of \$[TBD] as an offset to resource costs offered in FCEM/ICCM
- If yes, does it receive credits for both programs?
 - We have offered two potential models in our December whitepaper.

ISO-NE Questions (10)

- If not, does the resource choose which credit is awarded, or does one program supersede the other?
 - We assume the two are not mutually exclusive, consistent with the two suggested modeling scenarios.
- The answer to the above may have implications, such as if/how suppliers price "clean energy" offers.
 - For modeling, see suggestion on 'ISO-NE Questions (9)'
- Whether the FCEM replaces (or reduces) certain state policy requirements.
 - Over time, we expect requirements will trend toward the single attribute of 'no carbon emissions.'

ISO-NE Questions (11)

- The design appears to allocate "clean energy" costs to RTLO in the states that buy this product.
 - Assume that FCEM/ICCM costs are allocated to end-use consumers in participating states using the RTLO metric and the 'supply' portion of retail bills.
- If it allows non-rationable "clean energy" MWh offers/bids there may not be a single price that is acceptable to all buyers and sellers.
 - As with FCM, some amount of 'non-rationability' is likely unavoidable. Optimize for social surplus in the same manner as FCM.

ISO-NE Questions (12)

- In such cases, the design would require side payments. This is how minimum offers in the energy market can create uplift.
- In such cases, how would the "clean energy" price be determined?
 How would the costs associated with any side payments be allocated?
 - Side payments would be added to the costs allocated to end-use consumer RTLO. The clearing price would be determined based on the social surplus optimization. The payment rate for buyers might differ from the clearing price.

ISO-NE Questions (13)

- Stakeholders have discussed an approach that would jointly optimize forward capacity and "clean energy" positions. [aka, ICCM]
- Would resources offer capacity and "clean energy" jointly?
 - As envisioned, ICCM would entail joint offers comprising both the resource adequacy/capacity capabilities of the resource as well as its clean energy attribute capabilities, in a single non-rationable offer. For modeling this is likely sufficient. For implementation it may be valuable for resources to be able to submit rationable offers.

ISO-NE Questions (14)

- How would such offers be formulated? Do participants submit separate offers for each product, or a joint offer for both?
 - A resource's offer would be based on its total cost/revenue requirements for the applicable year less anticipated energy/ancillary service revenues. It would be presented in terms of \$/year for the resource as a whole. For implementation there would likely be refinements to account for performance risk associated with each product.
- If separate offers, could an offer clear for one product but not the other, or would the products be bundled?
 - This is the reason for bundled and non-rationable offers.

ISO-NE Questions (15)

- Are offers non-rationable? If yes, how would prices be determined? Are side payments required?
 - As noted above, this may be an unavoidable consequence of this design. The significance of this issue will depend on the magnitude of the bid-in demand relative to the level of supply and the size of individual projects, among other things.
- Is such a joint optimization feasible?
 - Brattle has demonstrated the mathematics at a small scale and there is no obvious reason it cannot be scaled. This is one of the key questions to resolve in modeling.

ISO-NE Questions (16)

- What study year (or years) should be evaluated? What are the regional and state carbon emissions targets for the study year(s)? What are the assumed load levels and shapes?
 - Suggest adopting appropriate scenario assumptions from the Future Grid Reliability Study
 - While a time-series 'capacity expansion' approach might be ideal, it appears far too complex to effectively formulate and solve.
- What are the assumptions regarding MOPR?
 - Assume all clean energy suppliers act in a rational economic manner based on costs without external subsidies and with no market power.

Some Unasked Questions (1)

- How should State demand for "clean energy" be formulated for modeling purposes?
 - Suggest translating state targets, eg, "80% reduction in carbon emissions by 2050" into MWh terms at the appropriate point along the trajectory.
 - Also consider RPS requirements and ensure FCEM demand is equal or greater
 - Also consider participation of existing contracts and if participating ensure FCEM demand is sufficiently large to clear on competitive offers
- How should the 'business as usual' case be constructed?

Some Unasked Questions (2)

- How should resources with state-backed long-term contracts participate in FCEM/ICCM?
 - Consider modeling several scenarios:
 - Assume contracted resources are outside of FCEM/ICCM and all contract-based revenues are subject to MOPR
 - Assume contracted resources participate as price-takers in FCEM/ICCM (with appropriate levels of demand to ensure price is set by non-contracted resources); FCEM revenues treated as 'in-market' for MOPR and other contract-based revenues subject to MOPR
 - Assume contracted resources participate as price-takers in FCEM/ICCM (with appropriate levels of demand to ensure price is set by non-contracted resources); no application of MOPR to contract revenues
 - Others?

Closing Observations

• The suggestions offered today represent starting points for discussion and refinement

• As the Pathways process evolves, maintain clarity on the assumptions needed to complete the <u>modeling</u> task

 Implementation of FCEM/ICCM will require yet more detailed and extensive discussion and engagement from all stakeholders in the region

Questions and Feedback

David O'Connor

+1.617.348.4418

DOConnor@mlstrategies.com | MLStrategies.com

Pete Fuller

pete@autumnlaneenergy.com 508/944-5075

