FEBRUARY 26, 2021 | WEBEX

Developing a GridView Flexible Electric Vehicle Charging Model

Future Grid Reliability Study

ISO-NE PUBLI

Wayne Coste

TECHNICAL MANAGER, RESOURCE STUDIES & ASSESSMENTS | SYSTEM PLANNING

Purpose of this Presentation

- In response to various questions about electric vehicles (EVs), the ISO has prepared this presentation:
 - To review current proposals to represent Electric Vehicles in the Future Grid Reliability Study (FGRS)
 - To discuss limitations in both data and modeling
 - To examine a conceptual model for flexible EV charging suitable for either
 - One-way "charging only" mode
 - Two-way "Vehicle-to-Grid ("V-2-Grid") mode
 - Request feedback on the preference for fixed EV charging profile vs. an LMP based "system benefits" flexible charging model

ISO-NE PUBL

Conceptual Model of Integrated EV Charging

- Develop a framework where EV charging would respond to system LMPs
 - Mesh with GridView's "objective function" for "minimizing production cost"
 - Represent charging flexibility to allow GridView to maximize "system benefits"
- Explore concepts around flexible charging
 - Amount of flexibility could be adjusted
 - One-way, "charging only" mode
 - Would have a limited operating range to increase or decrease charging
 - Probably limited to the minimum amount of charging load (no exporting to the grid)
 - Two-way, V-2-Grid mode
 - Charging and discharging can be a significant fraction of the charging load

ISO-NE PUBL

- Even vehicles not driven (and charged) on a daily basis can be assumed to participate

Background on Electric Vehicle Batteries

- Large amounts of vehicle battery storage capability have been implied
 - 2020 Economic Study assumed 2.2 million electric vehicles
 - Equivalent to 180,000 MWh of vehicle battery storage
 - Based on Tesla Model 3 at 82 kWh
 - About 22 times the assumed market facing batteries in the 2020 Economic Study
 - 2020 study assumed 8,000 MWh
 - Based on assumed 2,000 MW at 4 MWh/MW
 - Only a small portion of the vehicle flexible storage capability MWh will be used
- EV batteries are envisioned to withstand extensive cycling
 - "Million mile batteries" are being developed
 - See <u>https://www.greencarreports.com/news/1128221_gm-battery-chief-600-mile-evs-viable-million-mile-battery-in-sight</u>
 - EV mobile batteries appear resilient and can be repurposed when their energy density to weight ratio degrades (used in stationary battery facilities)

REVIEW OF EV PROPOSALS

FGRS Matrix Scenarios

Matrix Scenario – EV Assumptions

Scenario	Transportation				
Matrix Scenario 1	Peak: 1,817 MW Demand: 7.3TWh Hourly shapes, broken down by subarea proportional to population; Generally charging is lowest in the morning and peaks at hour ending 18:00 2035 EV assumptions represent a top-down projection of electric vehicle adoption. It focuses on light-duty vehicles and is absent of significant incremental policy support, including policies designed to impact EV charge timing. The EV load represents 2.2 million light-duty vehicles electrified by 2035 in ISONE (~19% of vehicle stock, 50% of new sales). May 20, 2020 PAC, slide 13 June 17, 2020 PAC, slides 22-23				
Matrix Scenario 2	EV contribution to winter 8PM peak: 3,578 MW EV Demand: 18.5 TWh EV stock based on forecast total vehicle miles and transportation sector emission targets EV demand profiles based on ISO-NE "Final Draft 2020 Transportation Electrification Forecast", adjusted to account for more coordinated charging				
Matrix Scenario 3	Transportation 39.9 TWh (embedded in load forecast from EnergyPATHWAYS) (Primary fuel type emissions reduced by approximately two-thirds relative to 2020)				

ISO-NE PUBLIC

Matrix Scenario 1 – 1,817 MW/7.3 TWh

ISO-NE PUBLI

The January 1st weekday charging energy is 12% of the assumed 180,400 MWh fleet capability (based on 82 kWh/vehicle)

Matrix Scenario 2 – 3,575 MW/18.5 TWh

ISO-NE PUBLIC

8

The January 1st weekday charging energy is 19% of the assumed 303,400 MWh fleet capability (based on 82 kWh/vehicle)

Matrix Scenario 3 – 14,714 MW/39.9 TWh

ISO-NE PUBLI

9

The January 1st weekday charging energy is 15% of the assumed 647,800 MWh fleet capability (based on 82 kWh/vehicle)

LIMITATIONS IN EV DATA AND MODELING

FGRS Modeling Challenge

EV Data Issues

- Future EV charging profiles are unknown
 - Expectations in proposed Matrix Scenario profiles seem to reflect:
 - EV energy consumption (e.g., vehicle mileage driven) will dominate daytime hours and early evening
 - Roughly corresponds to daily work week/school week
 - Charging will be mostly in evenings and overnight
 - Amount of flexibility in future EV charging is unknown and depends on:

ISO-NE PUBLI

- Driving range capabilities of future EVs (e.g., "range anxiety")
- Mid-day recharging opportunities (convenience and availability)
- Time-of-charging incentives
- Incentives for EV charging behavior can influence apparent load

Fixed EV Charging Profile: Flow Across Interface

Incentives for EV Charging Behavior

- Time-of-day incentives
 - Unlikely to induce a robust, beneficial charge/discharge profile every day
 - Charging and discharging at inopportune times to be expected
- Potential for two-way interactions between vehicle batteries and "the grid" (V-2-Grid)
 - Charge batteries when LMPs suggest renewable resources are on the margin
 - Discharge batteries when LMPs suggest non-renewable resources are on the margin
 - Provide energy and/or load following ancillary services
 - Assumes V-2-Grid batteries charge and discharge to provide "system benefits"
 - To provide "system benefits" dispatch signals must emanate from ISO control room
 - LMP key parameter for charging/discharging
 - ISO control room regulation signal may also be available for charging and discharging

EXPLORING CONCEPTUAL EV FLEX CHARGING

"Systems Benefit" Framework

Exploring a Conceptual EV Model

- Assumptions are required for the conceptual EV model
- Vehicle batteries with highest energy density to weight ratio are preferred
 - Degradation of energy density is a concern of all EV owner/operators
 - Need to reflect a value for the degradation of energy density
- Assumed vehicle battery Variable O&M
 - Variable O&M for mobile batteries need to reflect premium for preservation of energy density to weight ratio
 - Assumed to be \$9/MWh (each direction)
- "Trading Friction" on EV interface can also be added to reflect owner/operator reluctance to offer bi-directionality

EV Charging Model: Flows Across Flex Interface

CONCEPTUAL EV MODEL

LMP Responsive EV Model Based on System Benefits

Conceptual EV Flex Charging Model: Example

- A conceptual Flex charging model has been developed
 - Responds to LMPs
 - Opportunity to charge when LMPs are "lower"
 - Opportunities to discharge to the grid when LMPs are "higher"
 - Uses GridView's energy storage algorithm
 - Minimization of production cost
 - Use of battery capability for "system benefit"
 - Example assumes following parameters
 - EV load modeled at an aggregate RSP sub-area level
 - Battery MW ("inverter") size is 50% of RSP sub-area peak charging pattern
 - Battery capability is four MWhs/MW of "inverter"
 - Battery variable O&M is \$9/MWh (each way) to represent preservation of high energy density to weight (3 times variable O&M for grid-facing battery)

- Zero additional trading friction across vehicle-to-grid "interface"
- Round-trip efficiency of 86 percent

Chronological EV Charging (14 Days in April)

Chronological Flex Charging (14 Days in April)

NOTE: LMP induced flows may be either "into" or "out of" the EV/battery system depending on state-of-charge and LMPs in adjacent hours, not just one specific hour.

Chronological Flex Charging With LMPs

ISO-NE PUBL

21

NOTE: Charging tends to increase when LMPs are negative. Charging tends to decrease (or export) when flows are positive

Flex Interface Flow: No Flex – EV Charging Only

ISO-NE PUBLIC

22

With no flex charging, interface flow equal EV charging

Flex Interface Flow: When LMPs are Positive

With Flex charging, positive LMPs tend to decrease charging and possibly export to the grid

ISO-NE PUBLIC

Flex Interface Flow: When LMPs are Negative

ISO-NE PUBLIC

24

With flex charging, negative LMPs tend to increase charging

Flex Interface Flow: All LMPs

ISO-NE PUBLIC

25

With flex charging, interface flow responds to LMPs

OBSERVATIONS ABOUT FLEX CHARGING MODEL

FGRS EV Modeling Questions

Broad Assumptions Used in Conceptual EV Model

- Key assumptions to review:
 - Flex charging allowed V-2-Grid exports, but exports to the grid are optional
 - Willingness of vehicle owner/operators to make battery capability available to provide "system benefits" was assumed
 - Assumed Flex charging to be 50 percent of EV peak charging MW
 - Assumed 4 MWh/MW of participating EV load for:
 - "additional" charging/absorption
 - "additional" discharging/depletion capability
 - Variable O&M of \$9/MWh (each way) seems like a reasonable barrier to excessive degradation of energy density to weight from low-value operation
 - Additional "trading friction" across interface seems unnecessary
 - Distribution system assumed to have an ability to support V-2-grid

FGRS Matrix Scenario – EV Assumptions

Matrix Scenario		Flex Model Assumptions			
Scenario	Number of Vehicles (Million)	Total EV Peak Charging (MW)	Total EV Battery Storage (MWh) *	EV/battery "Inverter" (MW)	EV/Battery Capacity (MWh)
Matrix Scenario 1	2.2	1,817	180,400	909	3,634
Matrix Scenario 2	3.7	3,578	303,400	1,789	7,156
Matrix Scenario 3	7.9	14,714	647,800	7,357	29,428

ISO-NE PUBLIC

28

* Total EV Battery Storage (MWh) based on 82 kWh/vehicle

Observations About Flex Charging Model

- EV charging has typically been represented as a static profile
 - Static profile can be adjusted to reflect time-of-use incentives
 - However, time-of-use creates a different assumed static profile
- Flexible EV charging may be a better representation than a static profile
 - Responds to system conditions as reflected in LMPs
 - Parameters can be adjusted for "charging only" or two-way "V-2-grid" operation
 - Based on assumptions about
 - Assumed MW discharge to the grid
 - Energy storage available
 - Simulation results show EV/battery has about 1.5 percent capacity factor
- Stakeholder feedback invited

Questions

ISO-NE PUBLIC

