JULY REPORT

NEPOOL Participants Committee Report

July 2020

ISO-NE PUBLIC

new england

ISO

Vamsi Chadalavada

EXECUTIVE VICE PRESIDENT AND CHIEF OPERATING OFFICER

Table of Contents

•	Highlights	Page	3
•	System Operations	Page	17
•	Market Operations	Page	30
•	Back-Up Detail	Page	47
	 Demand Response 	Page	48
	 New Generation 	Page	50
	 Forward Capacity Market 	Page	57
	 Reliability Costs - Net Commitment Period 	Page	63
	Compensation (NCPC) Operating Costs		
	 Regional System Plan (RSP) 	Page	92
	 Operable Capacity Analysis – Summer 2020 Analysis 	Page	124
	 Operable Capacity Analysis – Appendix 	Page	131

ISO-NE PUBLIC

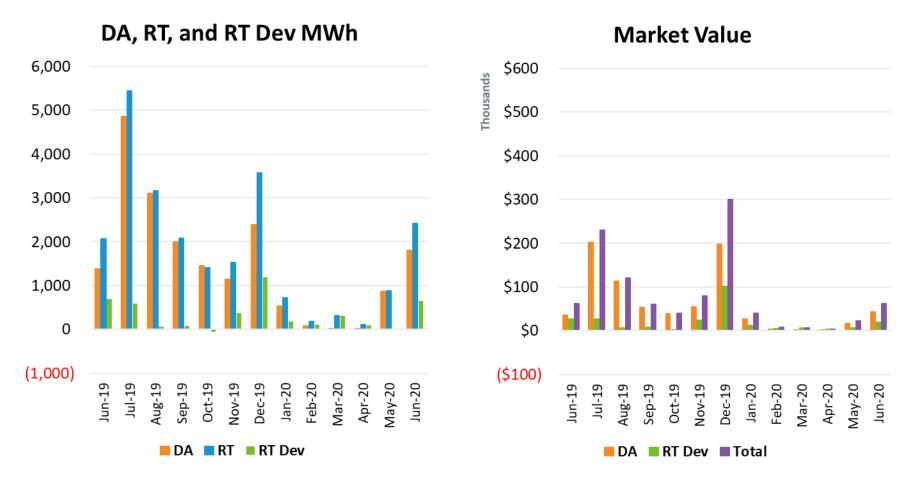
Regular Operations Report -Highlights

ISO Operations During COVID-19 Outbreak

- Effective March 14, ~95% of ISO workforce has been working remotely
- All reliability, market and planning functions are being operated in accordance with all applicable standards
- ISO initiated its re-entry plan on June 15, and the first group of ~25 volunteer employees arrived on-site; the second group is scheduled over the next two weeks
- The ISO re-entry plan conforms to national, state, and local guidelines, is phased over a minimum period of four months, and will adapt to changing circumstances as necessary
- The ISO will continue to monitor the situation and take all necessary steps to reliably operate the bulk power system

Highlights

- Day-Ahead (DA), Real-Time (RT) Prices and Transactions
 - June 2020 Energy market value was \$215M over the period, up \$69M from May 2020 and down \$14M from June 2019
 - June natural gas prices over the period were 9.9% higher than May average values
 - Average RT Hub Locational Marginal Prices (\$21.17/MWh) over the period were 18% higher than May averages
 - DA Hub: \$19.84/MWh
 - Average June 2020 natural gas prices and RT Hub LMPs over the period were down 28% and 5.6%, respectively, from June 2019 averages
 - Average DA cleared physical energy* during the peak hours as percent of forecasted load was 98.9% during June, up from 98% during May
 - The minimum value for the month was 92.9% on Saturday, June 20^{th}



Highlights, cont.

- Daily Net Commitment Period Compensation (NCPC)
 - June 2020 NCPC payments totaled \$1.9M over the period, down \$0.5M
 from May and up \$0.5M from June 2019
 - First Contingency* payments totaled \$1.8M, down \$0.5M from May
 - \$1.6M paid to internal resources, down \$0.3M from May
 - » \$282K charged to DALO, \$787K to RT Deviations, \$517K to RTLO
 - \$184K paid to resources at external locations, down \$199K from May
 - » Charged to RT Deviations
 - Second Contingency payments totaled \$77K, up \$20K from May
 - Voltage payments totaled \$19K, up \$19K from May
 - NCPC payments over the period as percent of Energy Market value were 0.9%

* NCPC types reflected in the First Contingency Amount: Dispatch Lost Opportunity Cost (DLOC) - \$185K; Rapid Response Pricing (RRP) Opportunity Cost - \$219K; Posturing - \$113K; Generator Performance Auditing (GPA) - \$0K

Price Responsive Demand (PRD) Energy Market Activity by Month

Note: DA and RT (deviation) MWh are settlement obligations and reflect appropriate gross-ups for distribution losses.

Highlights

- In response to the Boston 2028 RFP, 36 Phase One Proposals were received from 8 QTPSs
 - The ISO will discuss the draft list of qualifying Phase One Proposals at the June PAC meeting
- It was confirmed at the May 28 PSPC meeting that FCA 15 will model the same zones as FCA 14
- Final 2019 Northeast Coordinated System Plan was posted on May 4
- Final 2018 Electric Generator Air Emissions Report was posted on May 14
- 2020 Public Policy Transmission Upgrade Process was discussed at the June PAC meeting

- EE Reconstitution Project is underway
- 2019 Economic Studies are nearing completion
- 2020 Economic Study work has commenced

Forward Capacity Market (FCM) Highlights

- CCP 10 (2019-2020)
 - Late, new resources (regardless of size) are being monitored closely
- CCP 11 (2020-2021)
 - Third and final annual reconfiguration auction (ARA3) was held
 March 2-4 and results were posted on April 1
- CCP 12 (2021-2022)
 - Second reconfiguration auction (ARA2) will be August 3-5 and results to be posted by September 2

Forward Capacity Market (FCM) Highlights

- CCP 13 (2022-2023)
 - First reconfiguration auction (ARA1) was held June 1-3, and results were posted on July 1
- CCP 14 (2023-2024)
 - Auction results were filed with FERC on February 18 and FERC accepted the filing on April 10

ISO-NE PUBLIC

FCM Highlights, cont.

• CCP 15 (2024-2025)

FCA – Forward Capacity Auction ICR – Installed Capacity Requirement

- It was confirmed at the May 28 PSPC meeting that FCA 15 will model the same zones as FCA 14
 - Export-constrained zones: Maine nested inside Northern New England
 - Import-constrained zone: Southeast New England
- Existing capacity values were posted on March 6
- Summary of retirement and permanent delist bids was posted on March 18 and summary of substitution auction demand bids was posted on May 1
- New Capacity Resource Show of Interest window closed on April 24
- New Capacity Qualification Package (NCQP) submission window closed on June 19, and review of the NCQPs has begun
- ICR and related values development continues, with assumption discussions held with the PSPC

ISO-NE PUBLIC

• At the July 28 PSPC, there will be a discussion of what the ISO has done to date to understand the potential impacts of COVID19 on the load forecast

Load Forecast

- Efforts continue to enhance load forecast models and tools to improve day-ahead and long-term load forecast performance
 - Discussions are ongoing with industry experts regarding emerging technologies/trends and methods of incorporating these into the forecast

- EE Reconstitution project
 - RC was introduced to the issue at their April 22 meeting
 - RC vote in July and NPC vote in August

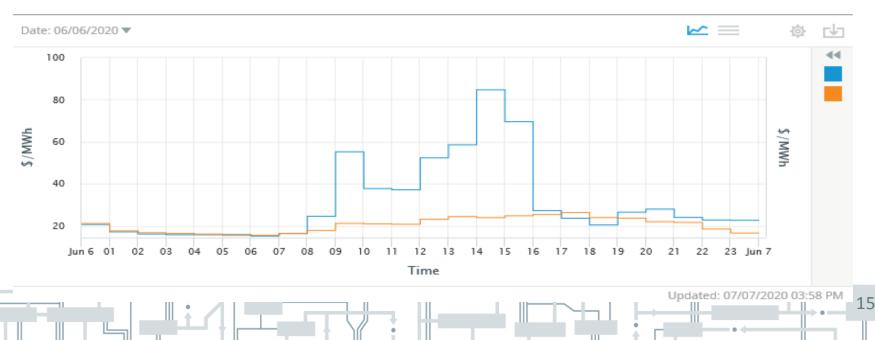
FERC Order 1000

- Qualified Transmission Project Sponsor (QTPS)
 - 25 companies have achieved QTPS status
- On 10/17/2019, FERC initiated a Section 206 Proceeding regarding the ISO's implementation of Order 1000 time-sensitive needs for immediate need reliability projects
 - On 6/18/2020, FERC terminated the proceeding with a finding that ISO's implementation of time-sensitive needs complies with the Tariff and did not require any additional Tariff changes
- The Public Policy Process was initiated on 1/14/2020
 - Stakeholder input on federal, state, and local Public Policy Requirements (PPRs) was required to be submitted by 2/28/2020
 - Two PPR submittals were received
 - NESCOE submitted a communication to the ISO regarding PPRs on 5/1/2020
 - No stakeholder input was received on NESCOE's communication regarding federal Public Policy Requirements
 - The ISO completed this cycle of the Public Policy process at the 6/17/2020 PAC meeting

ISO-NE PUBLIC

Boston 2028 Request for Proposal (RFP)

- The ISO issued the Boston 2028 RFP on 12/20/2019, which is its first RFP for a competitively-selected transmission solution
 - Phase One Proposals were required to be submitted by 11:00 p.m. on 3/4/2020
 - 36 Phase One Proposals were received from 8 QTPSs
 - Installed cost estimates ranged from \$49M to \$745M
 - In-service dates ranged from March 2023 to December 2026
 - The ISO discussed the draft list of qualifying Phase One Proposals at the 6/17/2020 PAC meeting
 - Stakeholder comments were due by 7/2/2020
 - The ISO had previously committed to a 'lessons learnt' process at the conclusion of this RFP, and reaffirms its commitment


ISO-NE PUBLIC

14

• The start date will be announced at a later time

Highlights – Loss of a major Generator on June 6

- On June 6, at 0921 the system experienced the loss of a major generation facility causing the loss of approximately 1250 MW of energy
- All transmission and disturbance control standard criteria were met and maintained
 - Recovery times for the Disturbance Control Standard were met within criteria
 - All reserve criteria were met during and following the event
 - The facility was returned to service on 6/11
 - DA vs RT pricing appears below

티지

HOURLY LMP GRAPH

Highlights

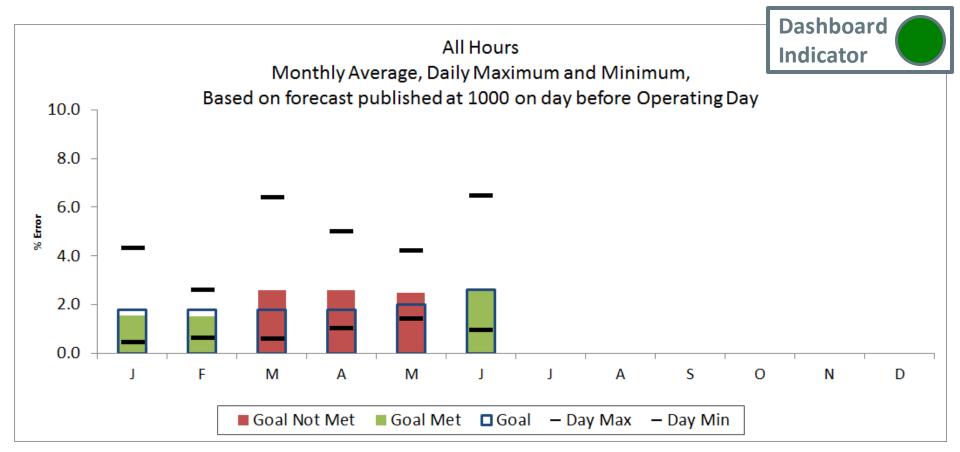
 The lowest 50/50 and 90/10 Summer Operable Capacity Margins are projected for week beginning September 12, 2020.

SYSTEM OPERATIONS

System Operations

<u>Weather</u> <u>Patterns</u>	Boston	Max: Preci	perature: Above Normal (1.6°F) 92°F, Min: 47°F pitation: 2.66″ – Below Normal nal: 3.68″		Hartford	Hartford Temperature: Above Normal (2.2°F) Max: 94°F, Min: 37°F Precipitation: 1.24" - Below Normal Normal: 4.35"			
Peak Load:			21,135 MW June 23, 2		2020		18:00 (ending)		

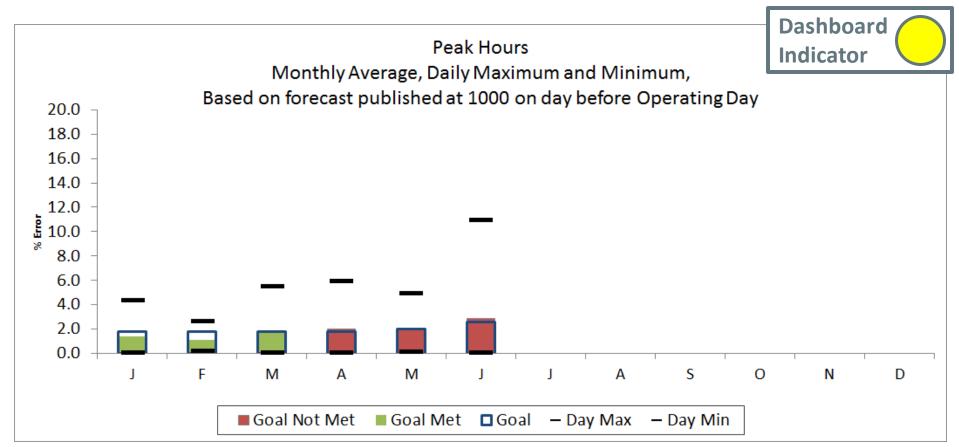
Emergency Procedure Events (OP-4, M/LCC 2, Minimum Generation Emergency)


Procedure	Declared	Cancelled	Note					
None for June 2020								

System Operations

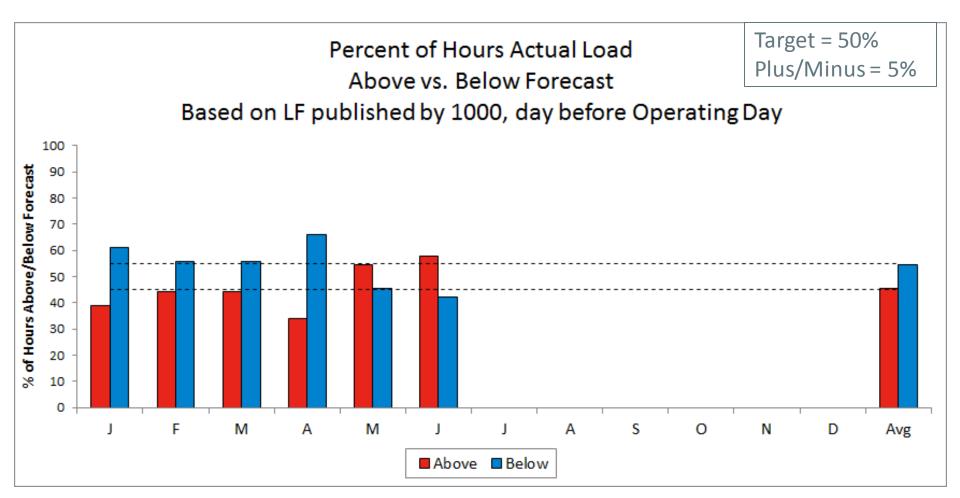
NPCC Simultaneous Activation of Reserve Events

Date	Area	MW Lost			
6/6	ISO-NE	1250			
6/9	NYISO	660			
6/10	ISO-NE	644			
6/16	NYISO	560			
6/18	NYISO	600			
6/24	ISO-NE	700			
6/25	IESO	830			
6/28	IESO	800			

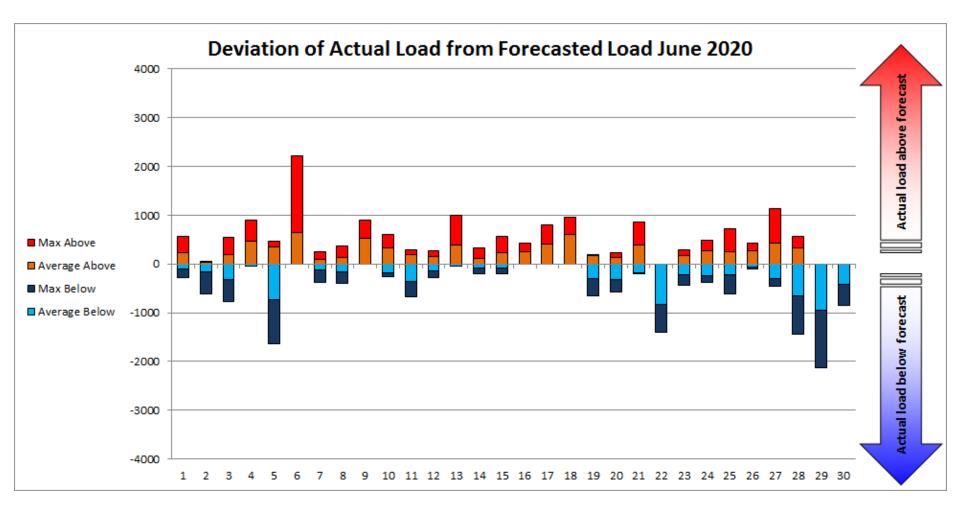

2020 System Operations - Load Forecast Accuracy

ISO-NE PUBLIC

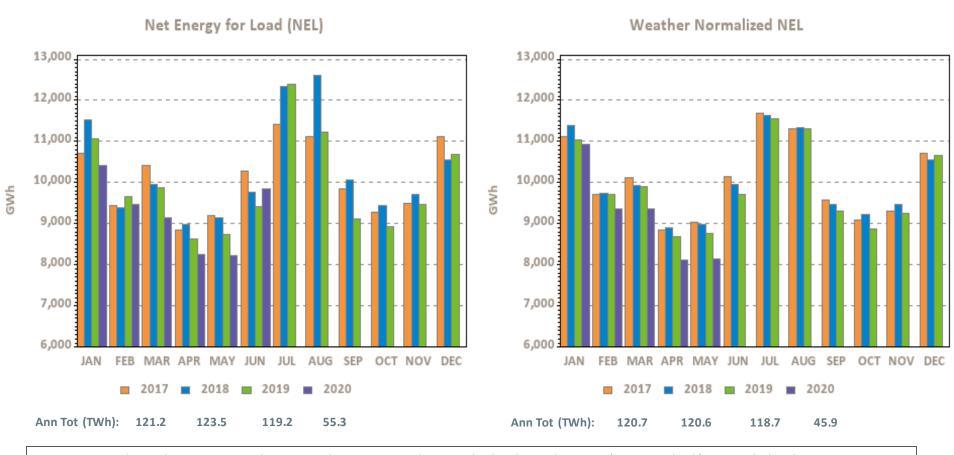
Month	J	F	М	А	М	J	J	А	S	0	Ν	D	
Day Max	4.31	2.59	6.40	5.00	4.22	6.47							6.47
Day Min	0.46	0.61	0.58	1.03	1.42	0.96							0.46
MAPE	1.57	1.54	2.60	2.58	2.49	2.58							2.23
Goal	1.80	1.80	1.80	1.80	2.00	2.60							


2020 System Operations - Load Forecast Accuracy cont.

ISO-NE PUBLIC

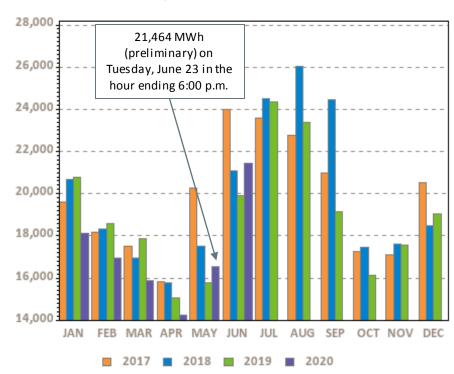

Month	J	F	М	А	М	J	J	А	S	0	Ν	D	
Day Max	4.33	2.59	5.48	5.93	4.94	10.93							10.93
Day Min	0.07	0.19	0.01	0.00	0.13	0.05							0.00
MAPE	1.41	1.12	1.72	1.97	2.11	2.83							1.86
Goal	1.80	1.80	1.80	1.80	2.00	2.60							

2020 System Operations - Load Forecast Accuracy cont.



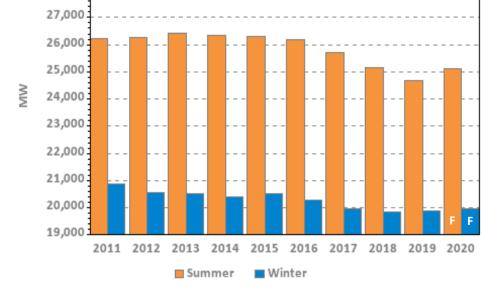
	J	F	М	А	М	J	J	А	S	0	Ν	D	Avg	
Above %	39	44.3	44.4	33.9	54.4	57.9							46	
Below %	61	55.7	55.6	66.1	45.6	42.1							54	
Avg Above	136.2	169.9	207	178.9	231.9	257.5							258	
Avg Below	-192.4	-157.6	-263.9	-265.3	-196.3	-243.5							-265	
Avg All	-65	-13	-56	-106	38	22							-30	
• •														

2020 System Operations - Load Forecast Accuracy cont.


Monthly Recorded Net Energy for Load (NEL) and Weather Normalized NEL

NEPOOL NEL is the total net revenue quality metered energy required to serve load and is analogous to 'RT system load.' NEL is calculated as: Generation – pumping load + net interchange where imports are positively signed. Current month's data may be preliminary. Weather normalized NEL may be reported on a one-month lag.

ISO-NE PUBLIC


Monthly Peak Loads and Weather Normalized Seasonal Peak History

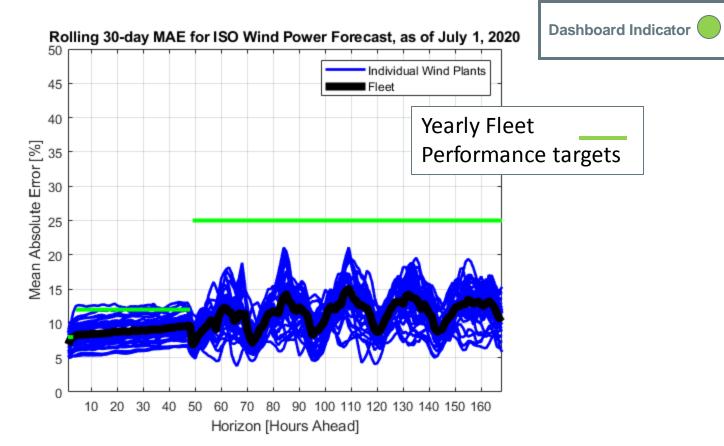
Revenue quality metered value

ΜW

System Peak Load

Weather Normalized Seasonal Peaks

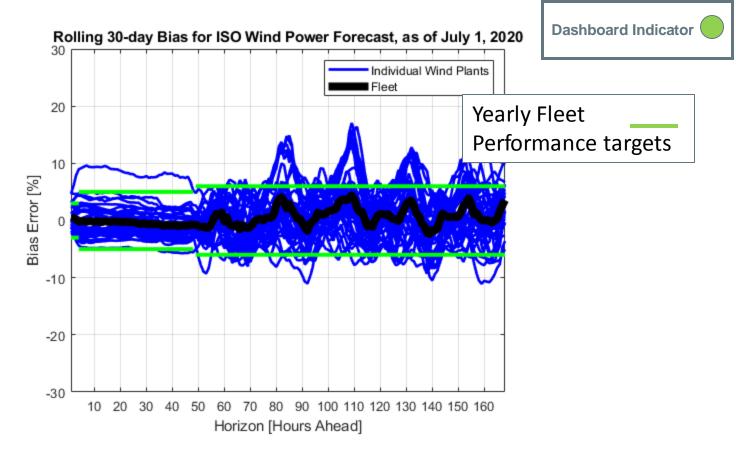
ISO-NE PUBLIC


29,000

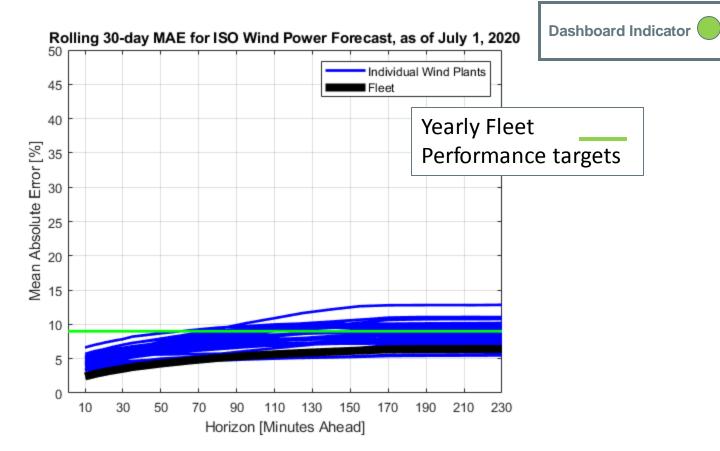
28,000

F – designates forecasted values, which are updated in April/May of the following year; represents "net forecast" (i.e., the gross forecast net of passive demand response and behind-the-meter solar demand)

Winter beginning in year displayed

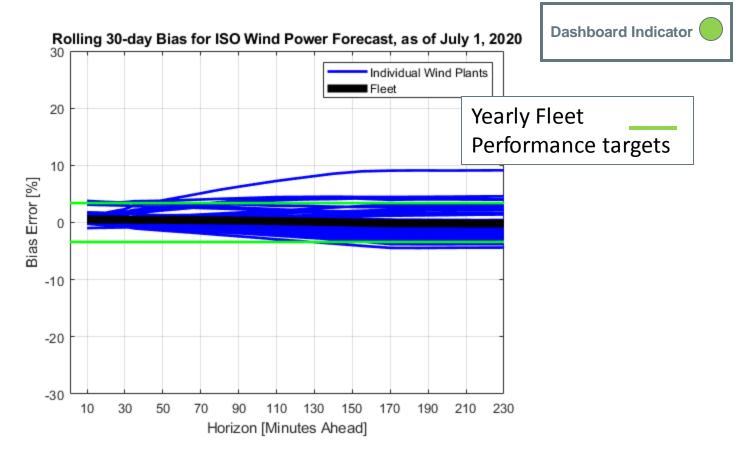

Wind Power Forecast Error Statistics: Medium and Long Term Forecasts MAE

Ideally, MAE and Bias would be both equal to zero. As is typical, MAE increases with the forecast horizon. MAE and Bias for the fleet of wind power resources are less due to offsetting errors. Across all time frames, the ISO-NE/DNV-GL forecast is very good compared to industry standards, and monthly MAE is within the yearly performance targets.



Wind Power Forecast Error Statistics: Medium and Long Term Forecasts Bias

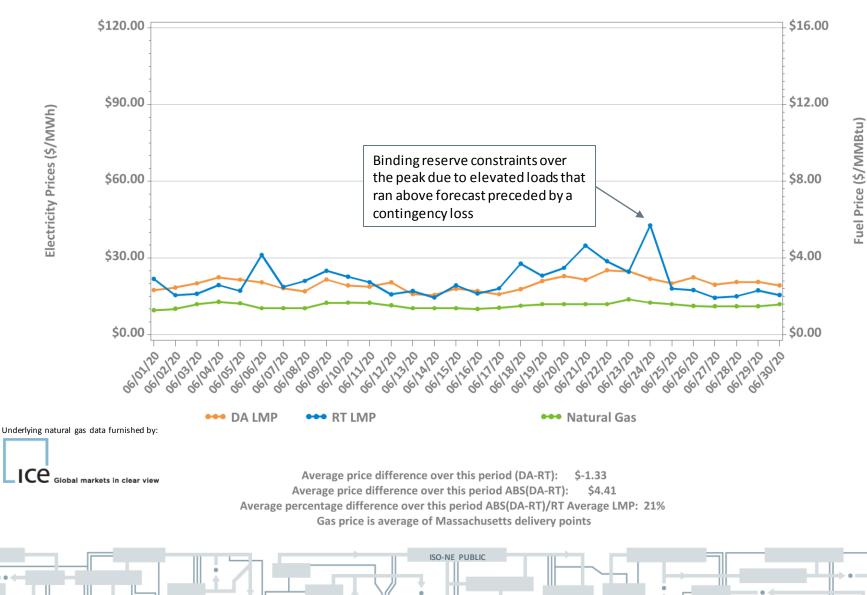
Ideally, MAE and Bias would be both equal to zero. Positive bias means less windpower was actually available compared to forecast. Negative bias means more windpower was actually available compared to forecast. Across all time frames, the ISO-NE/DNV-GL forecast compares well with industry standards, and monthly Bias is within yearly performance targets.


Wind Power Forecast Error Statistics: Short Term Forecast MAE

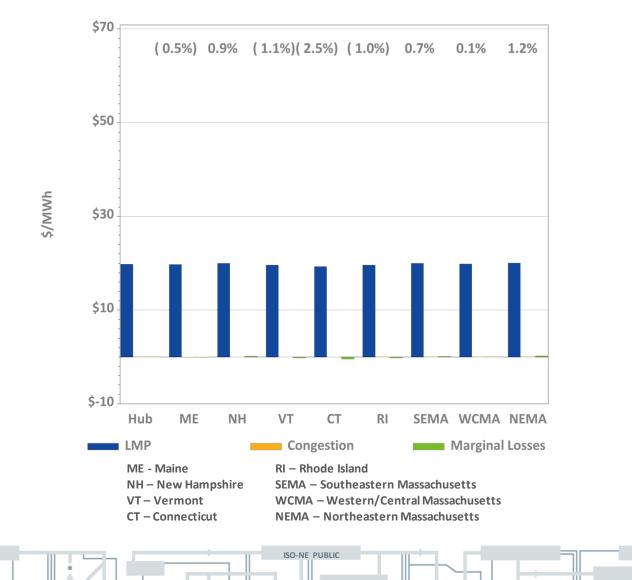
28

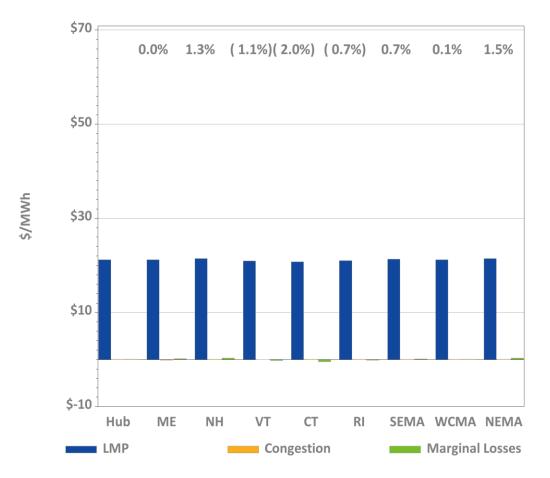
Ideally, MAE and Bias would be both equal to zero. As is typical, MAE increases with the forecast horizon. MAE and Bias for the fleet of wind power resources are less due to offsetting errors. Across all time frames, the ISO-NE/DNV-GL forecast is very good compared to industry standards, and monthly MAE is within the yearly performance targets.

Wind Power Forecast Error Statistics: Short Term Forecast Bias



Ideally, MAE and Bias would be both equal to zero. Positive bias means less windpower was actually available compared to forecast. Negative bias means more windpower was actually available compared to forecast. Across all time frames, the ISO-NE/DNV-GL forecast compares well with industry standards, and monthly Bias is within yearly performance.

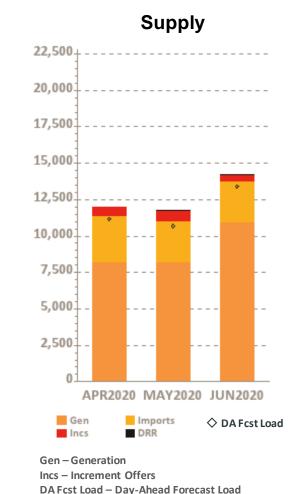

MARKET OPERATIONS

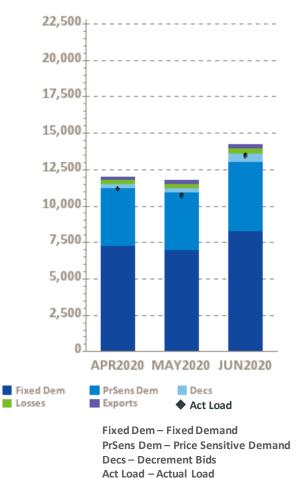

Daily Average DA and RT ISO-NE Hub Prices and Input Fuel Prices: June 1-30, 2020

DA LMPs Average by Zone & Hub, June 2020

RT LMPs Average by Zone & Hub, June 2020

Definitions

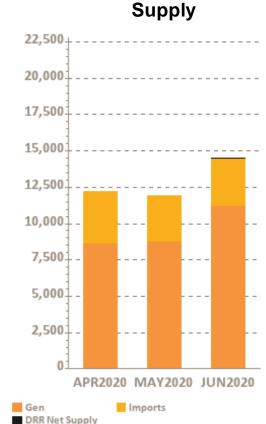

Day-Ahead Concept	Definition					
Day-Ahead Load Obligation (DALO)	The sum of day-ahead cleared load (including asset load, pump load, exports, and virtual purchases and excluding modeled transmission losses)					
Day-Ahead Cleared Physical Energy	The sum of day-ahead cleared generation and cleared net imports					



Components of Cleared DA Supply and Demand – Last Three Months

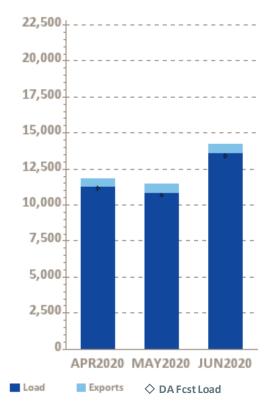
Avg Hourly MW

ISO-NE PUBLIC



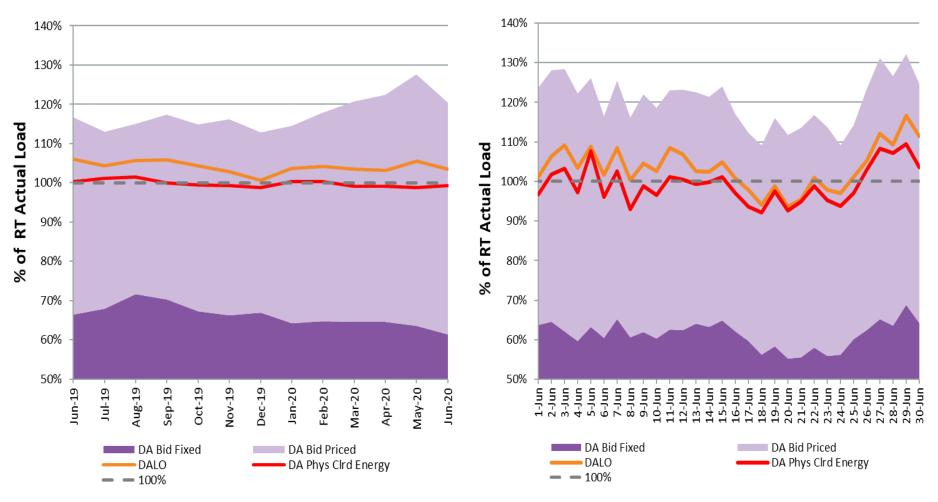
35

Demand


Avg Hourly MW

Components of RT Supply and Demand – Last Three Months

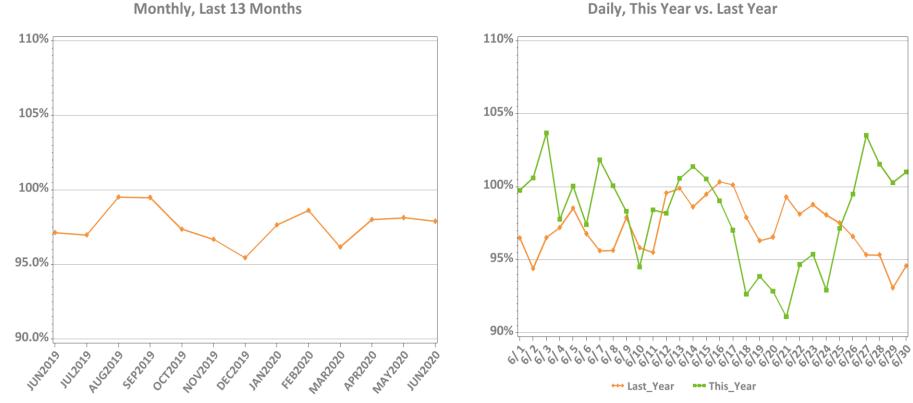
Avg Hourly MW



Avg Hourly MW

ISO-NE PUBLIC

Demand


DAM Volumes as % of RT Actual Load (Forecasted Peak Hour)

Note: Forecasted peak hour for each day is reflected in the above values. Shown for each day (chart on right) and then averaged for each month (chart on left). 'DA Bid' categories reflect load assets only (Virtual and export bids not reflected.)

37

DA vs. RT Load Obligation: June, This Year vs. Last Year

ISO-NE PUBLIC

*Hourly average values

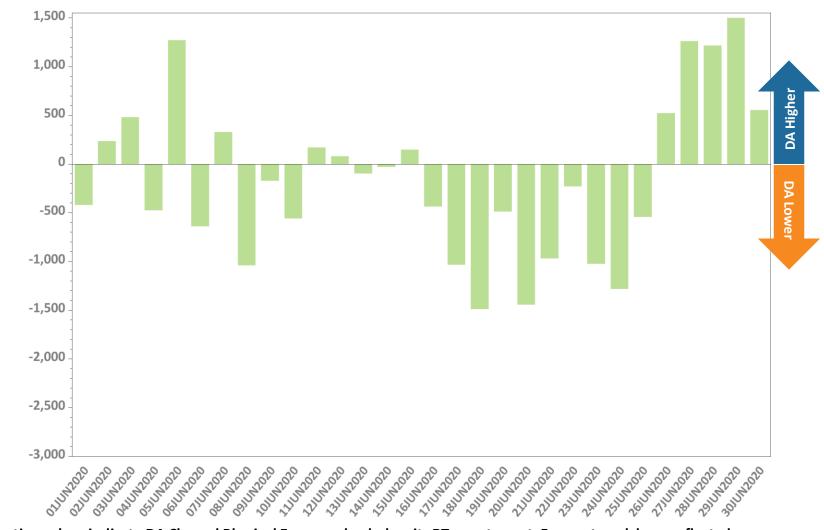
DA % of RT

DA Volumes as % of Forecast in Peak Hour

Monthly, Last 13 Months

Percentage of Peak Forecast Load

106% 118% 104% 112% 102% 106% 100% 100% 98.0% 94.0% 96.0% 88.0% 94.0% 82.0% 1012019 1112029 AUG2019 Step 2019 0572019 OFCIOLS 1242020 +182020 WARDODO MAY2020 1112020 M042020 APR2020 +++ DA Cleared Physical Energy +++ DA Cleared Physical Energy +++ DALO +++ DALO 100% line 100% line


* There were *several* system-level supplemental commitments for capacity required during the Reserve Adequacy Assessment (RAA) during June, primarily on June 6 resulting from a contingency, followed by unit trips and loads above forecast.

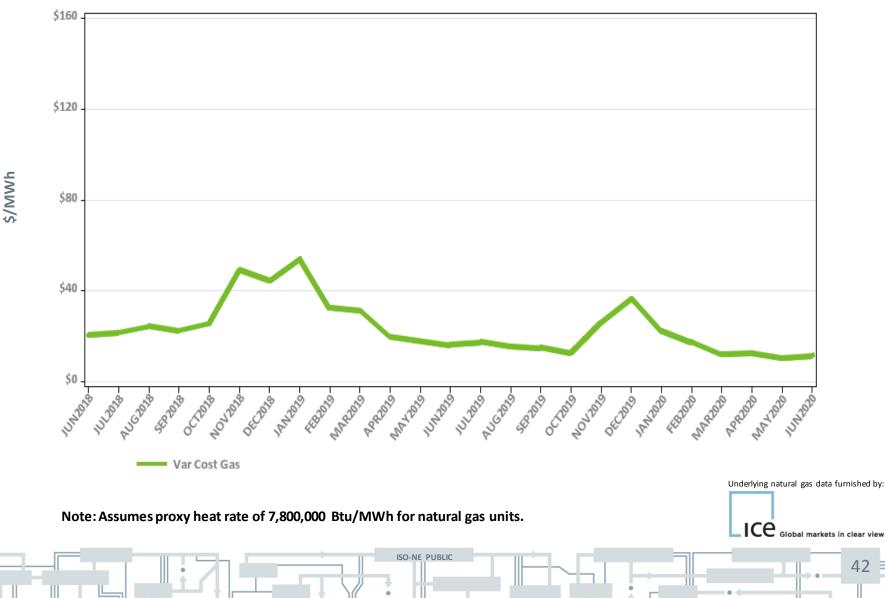
ISO-NE PUBLIC

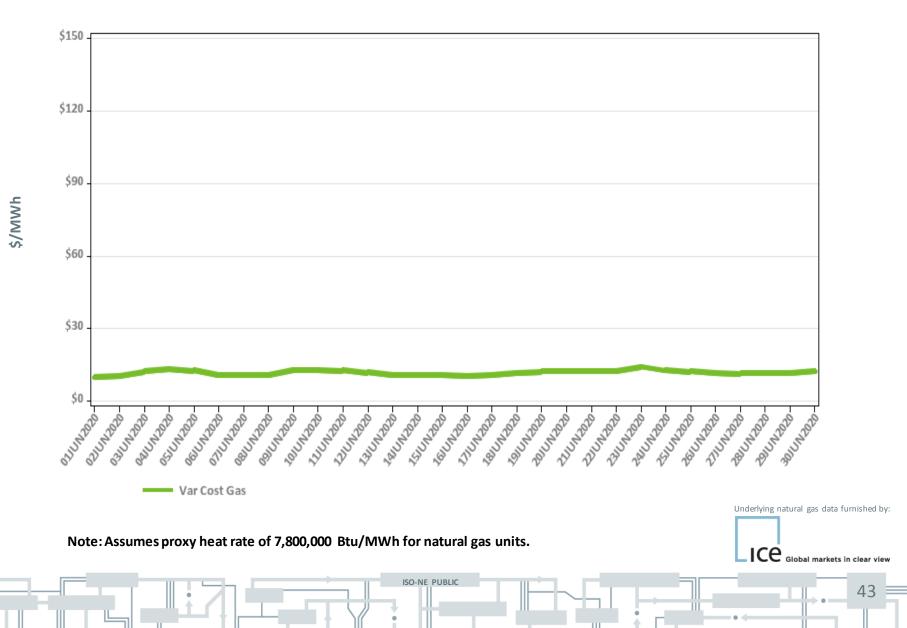
39

Daily: This Month

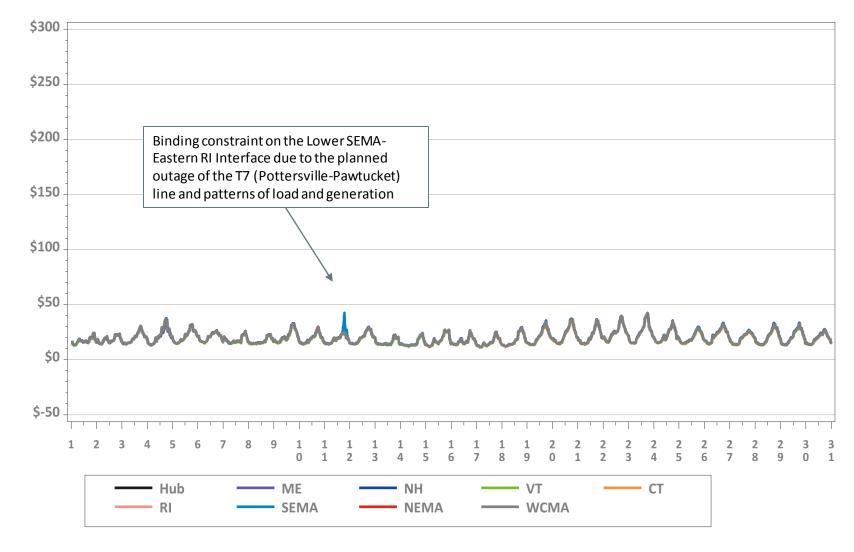
DA Cleared Physical Energy Difference from RT System Load at Peak Hour*

*Negative values indicate DA Cleared Physical Energy value below its RT counterpart. Forecast peak hour reflected.


DA vs. RT Net Interchange June 2019 vs. June 2020


Net Interchange is the sum of daily imports minus the sum of daily exports Positive values are net imports

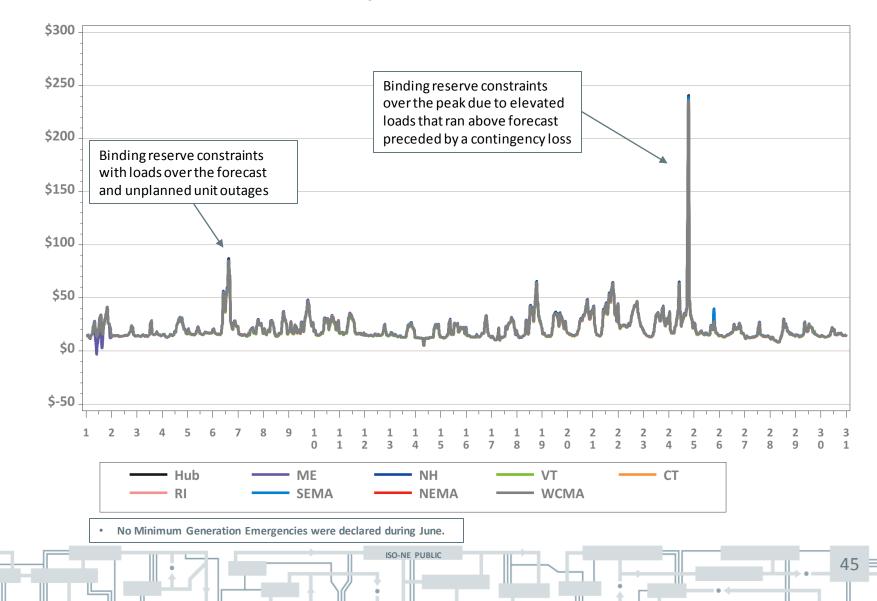
Variable Production Cost of Natural Gas: Monthly



Variable Production Cost of Natural Gas: Daily

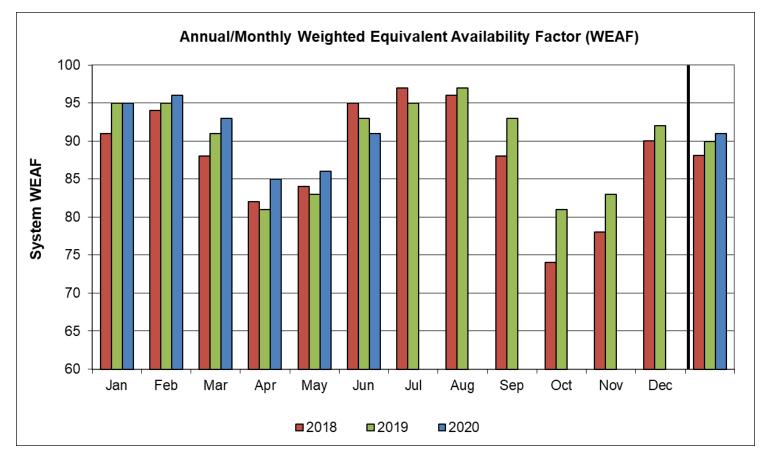
Hourly DA LMPs, June 1-30, 2020

Hourly Day-Ahead LMPs


ISO-NE PUBLIC

44

\$/MWh


Hourly RT LMPs, June 1-30, 2020

Hourly Real-Time LMPs

\$/MWh

System Unit Availability

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	YTD
2020	95	96	93	85	86	91							91
2019	95	95	91	81	83	93	95	97	93	81	83	92	90
2018	91	94	88	82	84	95	97	96	88	74	78	90	88

ISO-NE PUBLIC

Data as of 6/25/2020

BACK-UP DETAIL

DEMAND RESPONSE

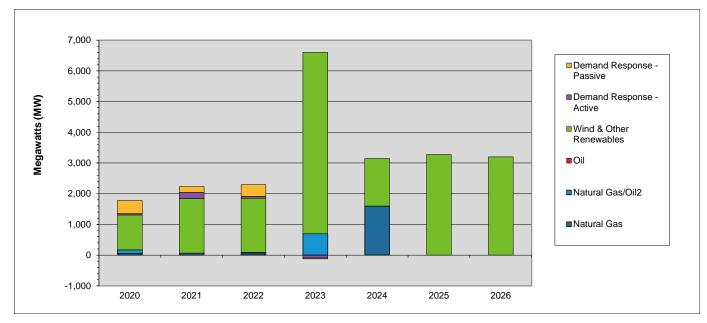
Capacity Supply Obligation (CSO) MW by Demand Resource Type for July 2020

Load Zone	ADCR*	On Peak	Seasonal Peak	Total
ME	69.5	184.1	0.0	253.6
NH	31.9	147.9	0.0	179.8
VT	29.3	100.7	0.0	130.0
СТ	100.3	161.6	549.2	811.1
RI	36.5	270.0	0.0	306.5
SEMA	43.6	443.1	0.0	486.7
WCMA	64.5	464.2	45.3	574.0
NEMA	47.6	811.3	0.0	858.9
Total	423.4	2,582.8	594.5	3,600.7

ISO-NE PUBLIC

* Active Demand Capacity Resources NOTE: CSO values include T&D loss factor (8%).

NEW GENERATION



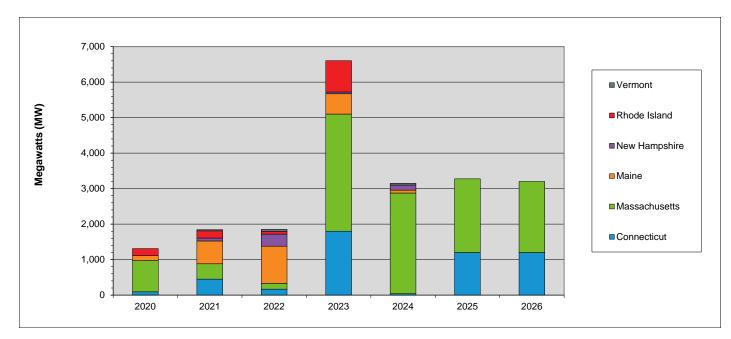
New Generation Update Based on Queue as of 7/6/20

- Six projects totaling 250 MW applied for interconnection study since the last update
- One project went commercial and two projects withdrew, resulting in a net increase in new generation projects of 28 MW
- In total, 237 generation projects are currently being tracked by the ISO, totaling approximately 21,164 MW

ISO-NE PUBLIC

Actual and Projected Annual Capacity Additions By Supply Fuel Type and Demand Resource Type

	2020	2021	2022	2023	2024	2025	2026	Total MW	% of Total ¹
Demand Response - Passive	422	184	380	-28	0	0	0	958	4.3
Demand Response - Active	42	204	62	-94	0	0	0	214	1.0
Wind & Other Renewables	1,137	1,778	1,763	5,906	1,549	3,276	3,200	18,609	83.1
Oil	0	0	0	0	0	0	0	0	0.0
Natural Gas/Oil ²	121	0	16	695	0	0	0	832	3.7
Natural Gas	53	66	73	0	1,600	0	0	1,792	8.0
Totals	1,776	2,232	2,294	6,479	3,149	3,276	3,200	22,406	100.0


¹ Sum may not equal 100% due to rounding

² The projects in this category are dual fuel, with either gas or oil as the primary fuel

• 2020 values include the 69 MW of generation that has gone commercial in 2020

• DR reflects changes from the initial FCM Capacity Supply Obligations in 2010-11

Actual and Projected Annual Generator Capacity Additions By State

	2020	2021	2022	2023	2024	2025	2026	Total MW	% of Total ¹	
Vermont	0	35	60	0	50	0	0	145	0.7	
Rhode Island	200	202	73	880	0	0	0	1,355	6.4	
New Hampshire	0	83	342	50	142	0	0	617	2.9	
Maine	141	644	1,050	571	81	0	0	2,487	11.7	
Massachusetts	878	430	159	3,300	2,836	2,076	2,000	11,679	55.0	
Connecticut	92	450	168	1,800	40	1,200	1,200	4,950	23.3	
Totals	1,311	1,844	1,852	6,601	3,149	3,276	3,200	21,233	100.0	
¹ Sum may not equa	¹ Sum may not equal 100% due to rounding									

• 2020 values include the 69 MW of generation that has gone commercial in 2020

New Generation Projection By Fuel Type

	То	tal	Gre	en	Yel	low
Fuel Type	No. of Projects	Capacity (MW)	No. of Projects	Capacity (MW)	No. of Projects	Capacity (MW)
Biomass/Wood Waste	1	8	0	0	1	8
Battery Storage	15	2,079	0	0	15	2,079
Hydro	3	99	1	66	2	33
Landfill Gas	0	0	0	0	0	0
Natural Gas	13	1,792	0	0	13	1,792
Natural Gas/Oil	5	787	1	14	4	773
Nuclear	1	37	0	0	1	37
Oil	0	0	0	0	0	0
Solar	177	3,962	7	171	170	3,791
Wind	22	12,400	1	15	21	12,385
Total	237	21,164	10	266	227	20,898

• Projects in the Natural Gas/Oil category may have either gas or oil as the primary fuel

•Green denotes projects with a high probability of going into service

•Yellow denotes projects with a lower probability of going into service or new applications

New Generation Projection By Operating Type

	То	tal	Gre	een	Yel	Yellow		
	No. of	Capacity	No. of	Capacity	No. of	Capacity		
Operating Type	Projects	(MW)	Projects	(MW)	Projects	(MW)		
Baseload	8	133	0	0	8	133		
Intermediate	11	2,433	1	14	10	2,419		
Peaker	196	6,198	8	237	188	5,961		
Wind Turbine	22	12,400	1	15	21	12,385		
Total	237	21,164	10	266	227	20,898		

• Green denotes projects with a high probability of going into service

• Yellow denotes projects with a lower probability of going into service or new applications

ISO-NE PUBLIC

New Generation Projection By Operating Type and Fuel Type

	То	tal	Base	load	Interm	ediate	Pea	ker	Wind T	urbine
Fuel Type	No. of Projects	Capacity (MW)								
Biomass/Wood Waste	1	8	1	8	0	0	0	0	0	0
Battery Storage	15	2,079	0	0	0	0	15	2,079	0	0
Hydro	3	99	2	33	0	0	1	66	0	0
Landfill Gas	0	0	0	0	0	0	0	0	0	0
Natural Gas	13	1,792	4	55	8	1,731	1	6	0	0
Natural Gas/Oil	5	787	0	0	3	702	2	85	0	0
Nuclear	1	37	1	37	0	0	0	0	0	0
Oil	0	0	0	0	0	0	0	0	0	0
Solar	177	3,962	0	0	0	0	177	3,962	0	0
Wind	22	12,400	0	0	0	0	0	0	22	12,400
Total	237	21,164	8	133	11	2,433	196	6,198	22	12,400

• Projects in the Natural Gas/Oil category may have either gas or oil as the primary fuel

FORWARD CAPACITY MARKET

			FCA	AR	A 1	AR	A 2	AR	A 3
Resource Type	Resour	Resource Type		CSO	Change	CSO	Change	CSO	Change
				MW	MW	MW	MW	MW	MW
Demand	Active I	Demand	419.928	441.221	21.293	594.551	153.33	584.35	-10.201
Demand	Passive	Demand	2,791.02	2,835.354	44.334	2,883.767	48.413	2,964.695	80.928
	Demand Total		3,210.95	3,276.575	65.625	3,478.318	201.743	3,549.045	70.727
Gene	rator	Non-Intermittent	30,494.80	30,064.23	-430.569	30,159.891	95.661	2,9678.995	-480.896
		Intermittent	894.217	823.796	-70.421	809.571	-14.225	689.524	-120.047
	Generator Total		31,389.02	30,888.027	-500.993	30,969.462	81.435	30,368.519	-600.943
	Import Total		1,235.40	1,622.037	386.637	1,609.844	-12.193	1,124.6	-485.244
**Grand Total		35,835.37	35,786.64	-48.731	36,057.624	270.984	35,042.164	-1015.46	
Net ICR (NICR)		34,075	33,660	-415	33,520	-140	32,205	-1,315	

* Real-time Emergency Generators (RTEG) CSO not capped at 600.000 MW

** Grand Total reflects both CSO Grand Total and the net total of the Change Column.

Note: A resource's CSO may change for a variety of reasons outside ISO-NE administered trading windows. Reasons for CSO changes beyond bilaterals and reconfiguration auction may include terminations or recent declaration of commercial operation. Details of the changes that occurred due to non-annual event purposes are contained in the 2015-2020 CCP Monthly Capacity Supply Obligation Changes report on the ISO New England website.

ISO-NE PUBLIC

			FCA	AR	A 1	AR	A 2	AR	A 3
Resource Type	Resour	Resource Type		CSO	Change	CSO	Change	CSO	Change
				MW	MW	MW	MW	MW	MW
Demand	Active	Demand	624.445	659.137	34.692				
Demand	Passive	Demand	2,975.36	3,045.073	69.713				
	Demand Total		3,599.81	3,704.21	104.4				
Gene	erator	Non-Intermittent	29,130.75	29,244.404	113.654				
		Intermittent	880.317	806.609	-73.708				
	Generator Total		30,011.07	30,051.013	39.943				
	Import Total		1,217	1,305.487	88.487				
	** Grand Total		34,827.88	35,060.710	232.83				
	Net ICR (NICR)		33,725	33,550	-175				

* Real-time Emergency Generators (RTEG) CSO not capped at 600.000 MW

** Grand Total reflects both CSO Grand Total and the net total of the Change Column.

Note: A resource's CSO may change for a variety of reasons outside ISO-NE administered trading windows. Reasons for CSO changes beyond bilaterals and reconfiguration auction may include terminations or recent declaration of commercial operation. Details of the changes that occurred due to non-annual event purposes are contained in the 2015-2020 CCP Monthly Capacity Supply Obligation Changes report on the ISO New England website.

ISO-NE PUBLIC

			FCA	AR	A 1	AR	A 2	AR	A 3
Resource Type	Resour	Resource Type		CSO	Change	CSO	Change	CSO	Change
				MW	MW	MW	MW	MW	MW
Demand	Active I	Demand	685.554						
Demand	Passive	Demand	3,354.69						
	Demand Total		4,040.244						
Gene		Non-Intermittent	28,586.498						
		Intermittent	1,024.792						
	Generator Total		2,9611.29						
	Import Total		1,187.69						
	** Grand Total		34,839.224						
	Net ICR (NICR)		33,750						

* Real-time Emergency Generators (RTEG) CSO not capped at 600.000 MW

** Grand Total reflects both CSO Grand Total and the net total of the Change Column.

Note: A resource's CSO may change for a variety of reasons outside ISO-NE administered trading windows. Reasons for CSO changes beyond bilaterals and reconfiguration auction may include terminations or recent declaration of commercial operation. Details of the changes that occurred due to non-annual event purposes are contained in the 2015-2020 CCP Monthly Capacity Supply Obligation Changes report on the ISO New England website.

ISO-NE PUBLIC

			FCA	AR	A 1	AR	A 2	AR	A 3
Resource Type	Resour	Resource Type		CSO	Change	CSO	Change	cso	Change
			MW	MW	MW	MW	MW	MW	MW
Demand	Active	Demand	592.043						
Demanu	Passive	Demand	3,327.071						
	Demand Total		3,919.114						
Gene	erator	Non-Intermittent	27,816.902						
		Intermittent	1,160.916						
	Generator Total		28,977.818						
	Import Total		1,058.72						
	** Grand Total		33,955.652						
	Net ICR (NICR)								

* Real-time Emergency Generators (RTEG) CSO not capped at 600.000 MW

** Grand Total reflects both CSO Grand Total and the net total of the Change Column.

Note: A resource's CSO may change for a variety of reasons outside ISO-NE administered trading windows. Reasons for CSO changes beyond bilaterals and reconfiguration auction may include terminations or recent declaration of commercial operation. Details of the changes that occurred due to non-annual event purposes are contained in the 2015-2020 CCP Monthly Capacity Supply Obligation Changes report on the ISO New England website.

Active/Passive Demand Response CSO Totals by Commitment Period

Commitment Period	Active/Passive	Existing	New	Grand Total
	Active	357.221	20.304	377.525
2019-20	Passive	2,018.20	350.43	2,368.63
	Grand Total	2,375.422	370.734	2,746.156
	Active	334.634	85.294	419.928
2020-21	Passive	2,236.73	554.292	2,791.02
	Grand Total	2,571.361	639.586	3,210.947
	Active	480.941	143.504	624.445
2021-22	Passive	2,604.79	370.568	2,975.36
	Grand Total	3,085.734	514.072	3,599.806
	Active	598.376	87.178	685.554
2022-23	Passive	2,788.33	566.363	3,354.69
	Grand Total	3,386.703	653.541	4,040.244
	Active	560.55	31.493	592.043
2023-24	Passive	3,035.51	291.565	3,327.07
	Grand Total	3,596.056	323.058	3,919.114

RELIABILITY COSTS – NET COMMITMENT PERIOD COMPENSATION (NCPC) OPERATING COSTS

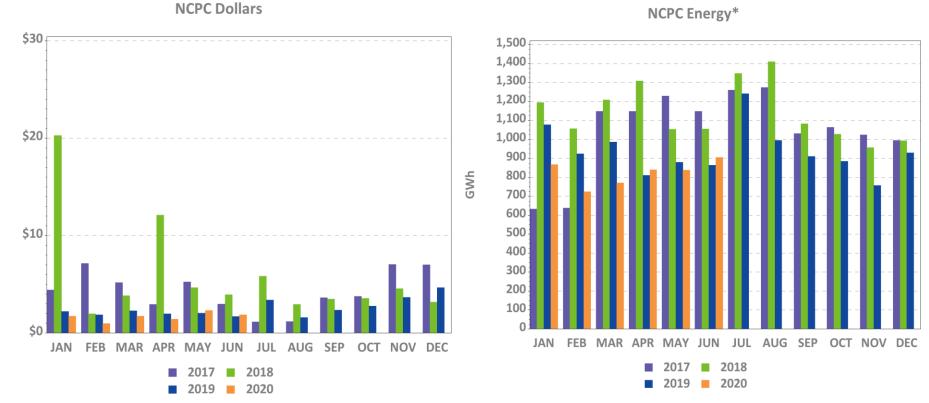
What are Daily NCPC Payments?

- Payments made to resources whose commitment and dispatch by ISO-NE resulted in a shortfall between the resource's offered value in the Energy and Regulation Markets and the revenue earned from output during the day
- Typically, this is the result of some out-of-merit operation of resources occurring in order to protect the overall resource adequacy and transmission security of specific locations or of the entire control area
- NCPC payments are intended to make a resource that follows the ISO's operating instructions "no worse off" financially than the best alternative generation schedule

Definitions

.

OATT	Open Access Transmission Tariff	
Distribution NCPC Payments	Reliability costs paid to units dispatched at the request of local transmission providers for purpose of managing constraints on the low voltage (distribution) system. These requirements are not modeled in the DA Market software	
Voltage NCPC Payments	Reliability costs paid to resources operated by ISO-NE to provide voltage support or control in specific locations	
2 nd Contingency NCPC Payments	Reliability costs paid to resources providing capacity in constrained areas to respond to a local second contingency. They are committed based on 2 nd Contingency (2ndC) protocols, and are also known as Local Second Contingency Protection Resources (LSCPR)	
1 st Contingency NCPC Payments	Reliability costs paid to eligible resources that are providing first contingency (1stC) protection (including low voltage, system operating reserve, and load serving) either system-wide or locally	

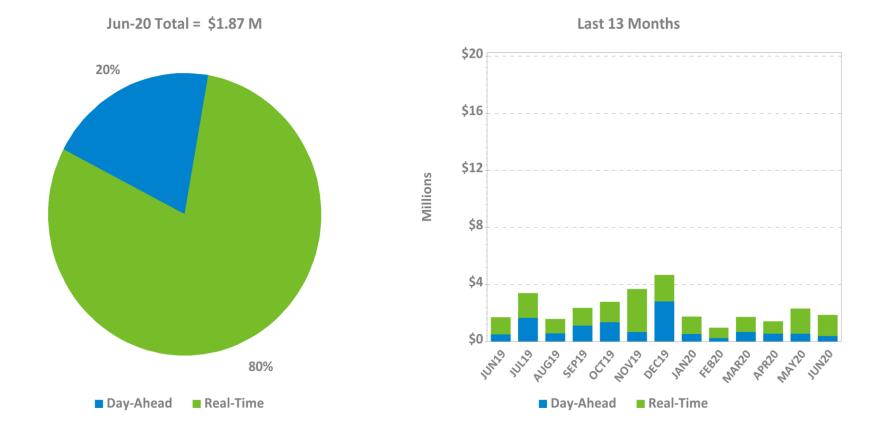

ISO-NE_PUBLIC

•

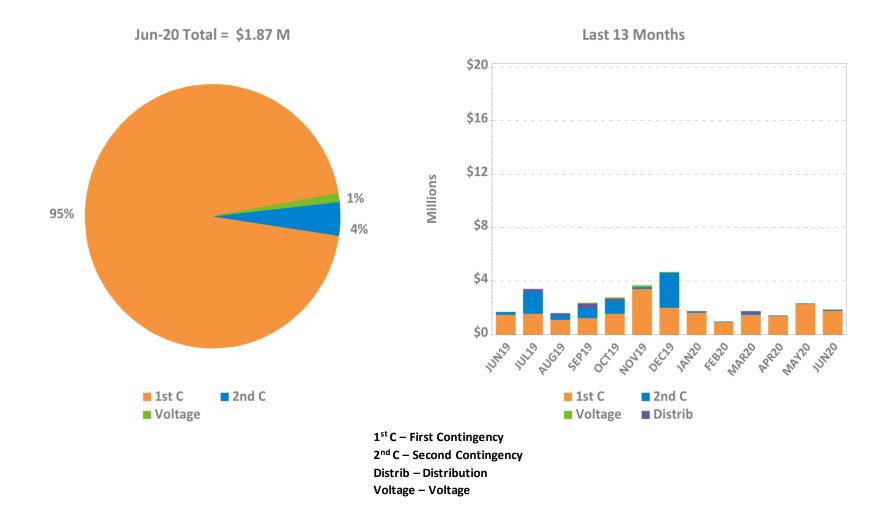
Charge Allocation Key

Allocation Category	Market / OATT	Allocation
System 1 st Contingency	Market	DA 1 st C (excluding at external nodes) is allocated to system DALO. RT 1 st C (at all locations) is allocated to System 'Daily Deviations'. Daily Deviations = sum of(generator deviations, load deviations, generation obligation deviations at external nodes, increment offer deviations)
External DA 1 st Contingency	Market	DA 1 st C at external nodes (from imports, exports, Incs and Decs) are allocated to activity at the specific external node or interface involved
Zonal 2 nd Contingency	Market	DA and RT 2 nd C NCPC are allocated to load obligation in the Reliability Region (zone) served
System Low Voltage	OATT	(Low) Voltage Support NCPC is allocated to system Regional Network Load and Open Access Same-Time Information Service (OASIS) reservations
Zonal High Voltage	OATT	High Voltage Control NCPC is allocated to zonal Regional Network Load
Distribution - PTO	OATT	Distribution NCPC is allocated to the specific Participant Transmission Owner (PTO) requesting the service
System – Other	Market	Includes GPA, Economic Generator/DARD Posturing, Dispatch Lost Opportunity Cost (DLOC), and Rapid Response Pricing (RRP) Opportunity Cost NCPC (allocated to RTLO); and Min Generation Emergency NCPC (allocated to RTGO).

Year-Over-Year Total NCPC Dollars and Energy

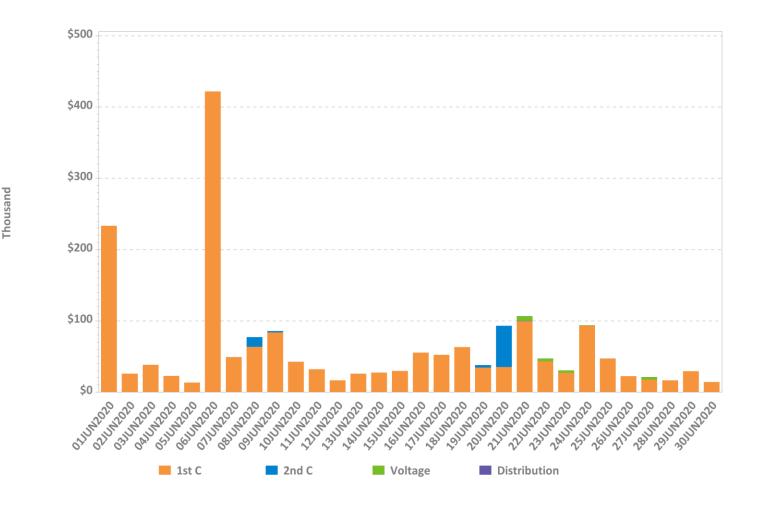


* NCPC Energy GWh reflect the DA and/or RT economic minimum loadings of all units receiving DA or RT NCPC credits (except for DLOC, RRP, or posturing NCPC), assessed during hours in which they are NCPC-eligible. Scheduled MW for external transactions receiving NCPC are also reflected. All NCPC components (1st Contingency, 2nd Contingency, Voltage, and RT Distribution) are reflected.

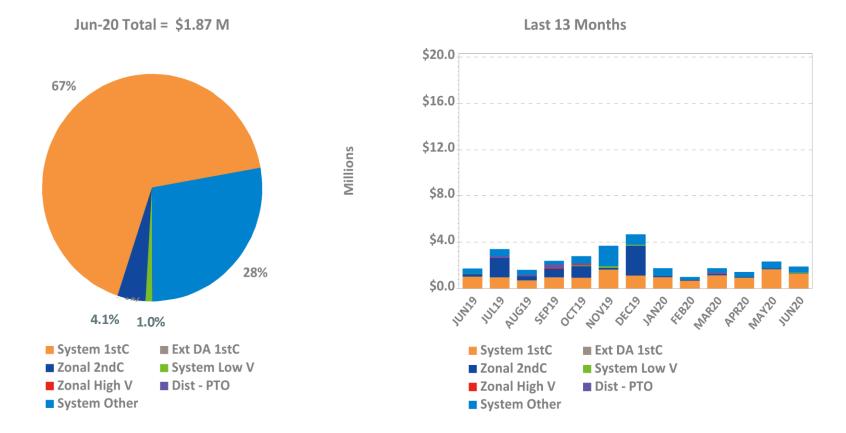

ISO-NE PUBLIC

Millions

DA and RT NCPC Charges

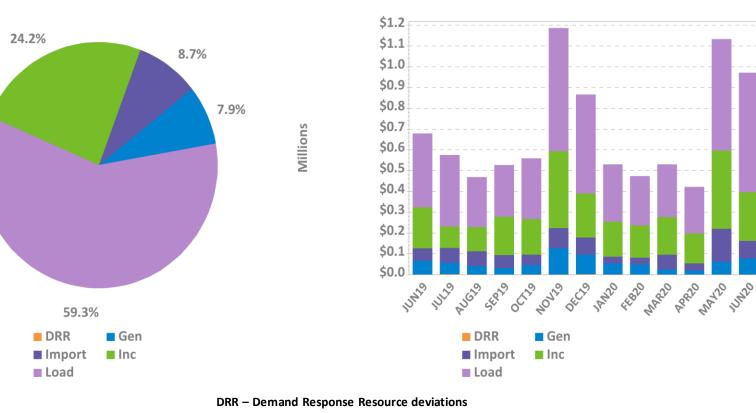


NCPC Charges by Type



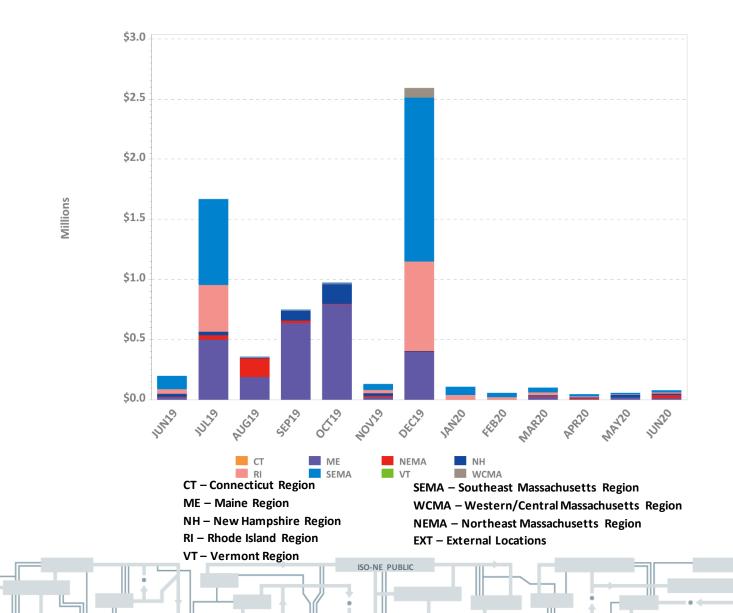
ISO-NE PUBLIC

Daily NCPC Charges by Type

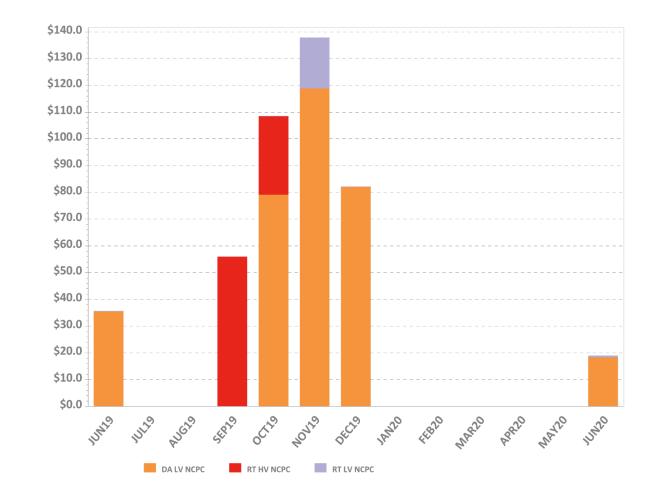

NCPC Charges by Allocation

Note: 'System Other' includes, as applicable: Resource Economic Posturing, GPA, Min Gen Emergency, Dispatch Lost Opportunity Cost (DLOC), and Rapid Response Pricing (RRP) Opportunity Cost credits.

RT First Contingency Charges by Deviation Type



Jun-20 Total = \$0.97 M


Last 13 Months

- Gen Generator deviations
- Inc Increment Offer deviations
- Import Import deviations
- Load Load obligation deviations

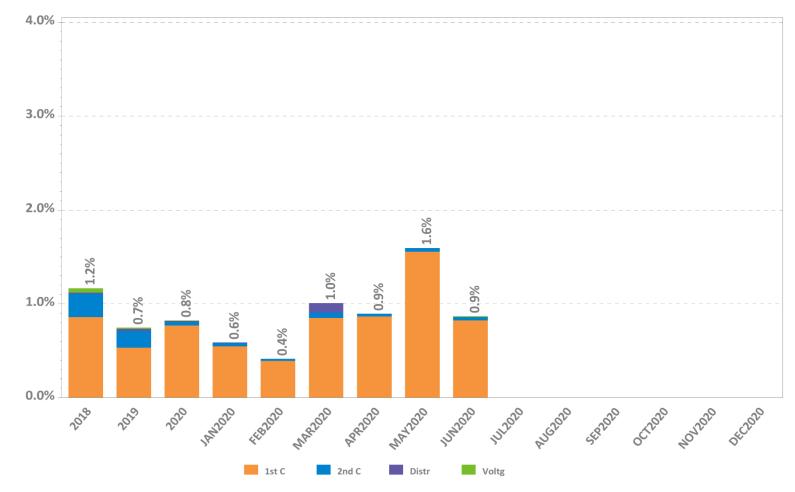
LSCPR Charges by Reliability Region

NCPC Charges for Voltage Support and High Voltage Control

ISO-NE PUBLIC

Thousand

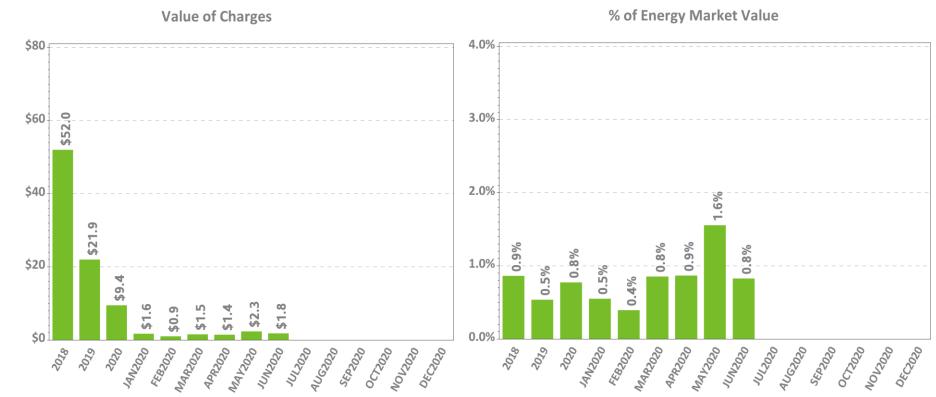
NCPC Charges by Type



ISO-NE PUBLIC

Millions

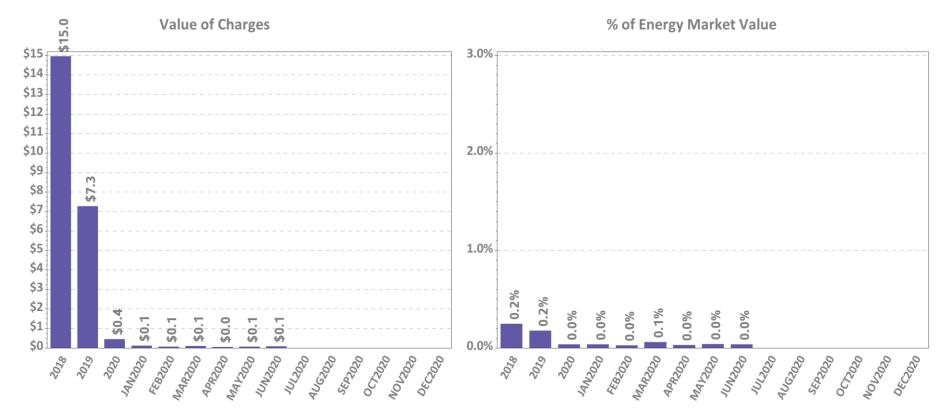
NCPC Charges as Percent of Energy Market



ISO-NE PUBLIC

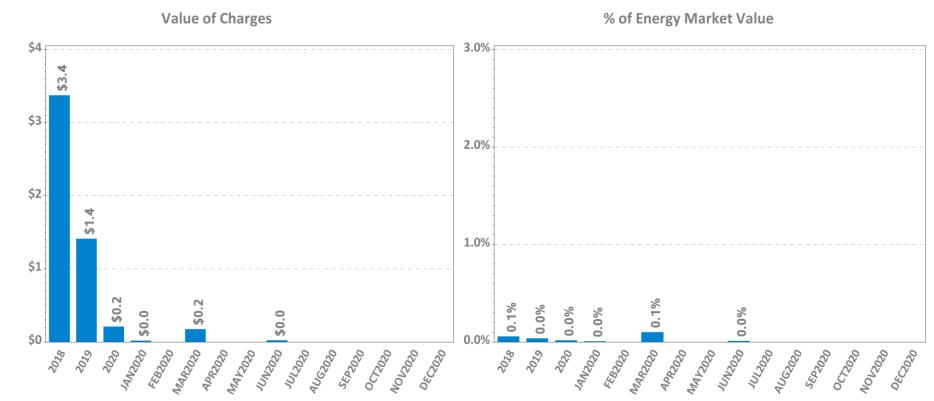
76

Percent


First Contingency NCPC Charges

Note: Energy Market value is the hourly locational product of load obligation and price in the DA Market plus the hourly locational product of price and RT Load Obligation Deviation in the RT Market

ISO-NE PUBLIC


Second Contingency NCPC Charges

Note: Energy Market value is the hourly locational product of load obligation and price in the DA Market plus the hourly locational product of price and RT Load Obligation Deviation in the RT Market

ISO-NE PUBLIC

Voltage and Distribution NCPC Charges

Note: Energy Market value is the hourly locational product of load obligation and price in the DA Market plus the hourly locational product of price and RT Load Obligation Deviation in the RT Market

ISO-NE PUBLIC

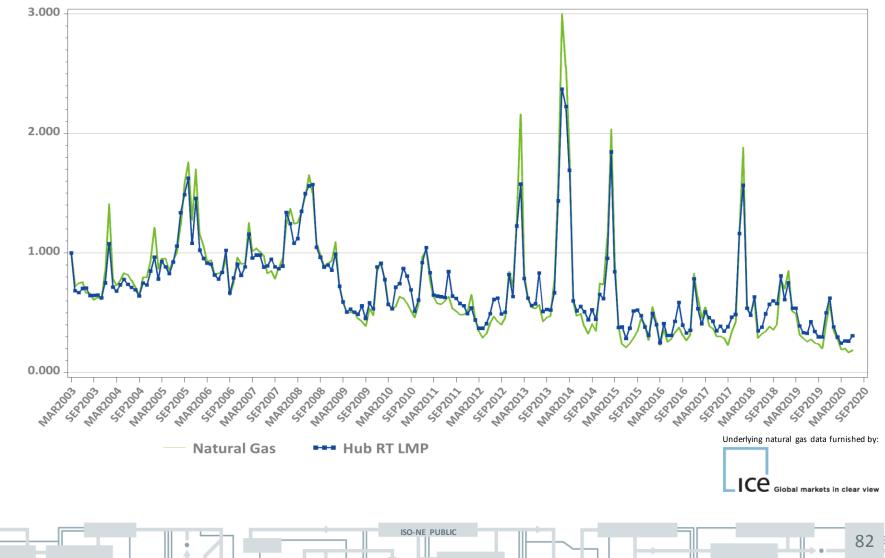
DA vs. RT Pricing

The following slides outline:

• This month vs. prior year's average LMPs and fuel costs

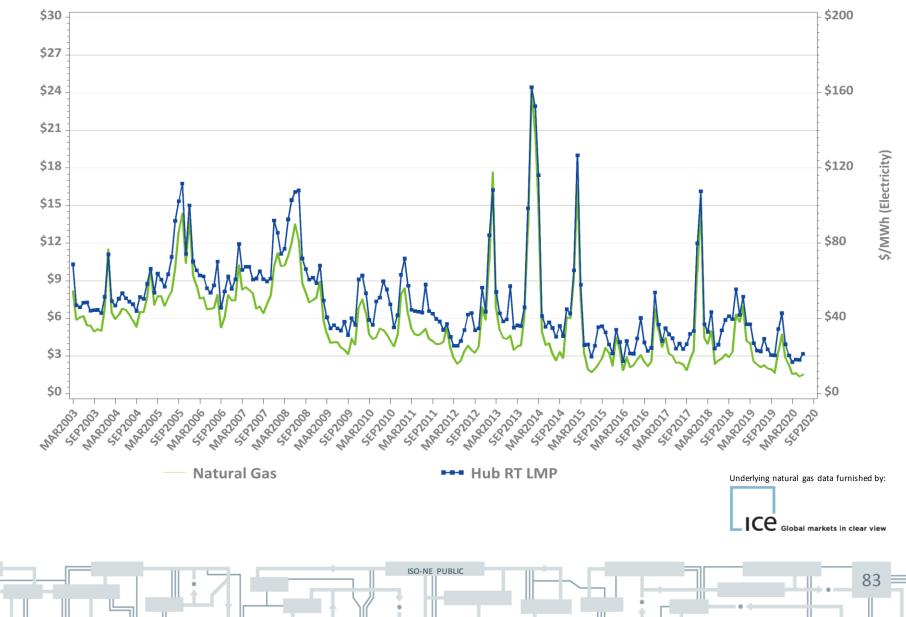
ISO-NE PUBLIC

- Reserve Market results
- DA cleared load vs. RT load
- Zonal and total incs and decs
- Self-schedules
- DA vs. RT net interchange

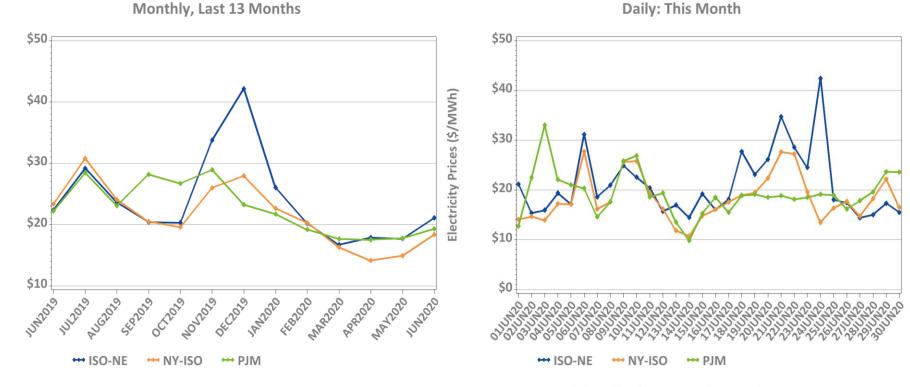

DA vs. RT LMPs (\$/MWh)

			AII	unneuca	verage				
Year 2018	NEMA	СТ	ME	NH	VT	RI	SEMA	WCMA	Hub
Day-Ahead	\$44.45	\$43.60	\$42.63	\$44.04	\$43.71	\$44.11	\$44.62	\$44.19	\$44.13
Real-Time	\$43.87	\$43.13	\$41.03	\$43.17	\$42.83	\$43.37	\$43.68	\$43.58	\$43.54
RT Delta %	-1.3%	-1.1%	-3.8%	-2.0%	-2.0%	-1.7%	-2.1%	-1.4%	-1.3%
Year 2019	NEMA	СТ	ME	NH	VT	RI	SEMA	WCMA	Hub
Day-Ahead	\$31.54	\$30.72	\$30.76	\$31.20	\$30.67	\$31.19	\$31.51	\$31.24	\$31.22
Real-Time	\$30.92	\$30.26	\$30.12	\$30.70	\$30.05	\$30.61	\$30.80	\$30.68	\$30.67
RT Delta %	-2.0%	-1.5%	-2.1%	-1.6%	-2.0%	-1.9%	-2.2%	-1.8%	-1.8%

June-19	NEMA	СТ	ME	NH	VT	RI	SEMA	WCMA	Hub
Day-Ahead	\$22.32	\$21.82	\$21.97	\$22.13	\$21.71	\$22.12	\$22.54	\$22.09	\$22.09
Real-Time	\$22.63	\$22.18	\$22.11	\$22.47	\$22.01	\$22.36	\$22.60	\$22.42	\$22.43
RT Delta %	1.4%	1.6%	0.7%	1.5%	1.4%	1.1%	0.3%	1.5%	1.5%
June-20	NEMA	СТ	ME	NH	VT	RI	SEMA	WCMA	Hub
Day-Ahead	\$20.07	\$19.33	\$19.75	\$20.02	\$19.63	\$19.65	\$19.98	\$19.85	\$19.84
Real-Time	\$21.48	\$20.74	\$21.17	\$21.44	\$20.94	\$21.01	\$21.31	\$21.19	\$21.17
RT Delta %	7.0%	7.3%	7.2%	7.1%	6.7%	7.0%	6.7%	6.7%	6.7%
Annual Diff.	NEMA	СТ	ME	NH	VT	RI	SEMA	WCMA	Hub
Yr over Yr DA	-10.1%	-11.4%	-10.1%	-9.6%	-9.6%	-11.2%	-11.4%	-10.1%	-10.2%
Yr over Yr RT	-5.1%	-6.5%	-4.3%	-4.6%	-4.9%	-6.0%	-5.7%	-5.5%	-5.6%


ISO-NE PUBLIC

Monthly Average Fuel Price and RT Hub LMP Indexes


March 2003=1.000

Monthly Average Fuel Price and RT Hub LMP

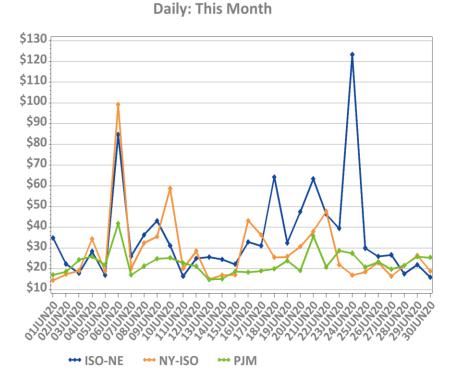
\$/MMBtu (Fuel)

New England, NY, and PJM Hourly Average Real Time Prices by Month

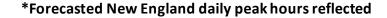
*Note: Hourly average prices are shown.

Electricity Prices (\$/MWh)

*Note: Hourly average prices are shown.



New England, NY, and PJM Average Peak Hour **Real Time Prices**


Electricity Prices (\$/MWh)

ISO-NE PUBLIC

Monthly, Last 13 Months

85

JAN2020

DECIDIO

🕶 PJM

4482020

WARDOLD

APRIDIO

WAY2020

11/12/020

Electricity Prices (\$/MWh)

\$60

\$50

\$40

\$30

\$20

\$10

11/12019

11/2019

AUG2019

++ ISO-NE

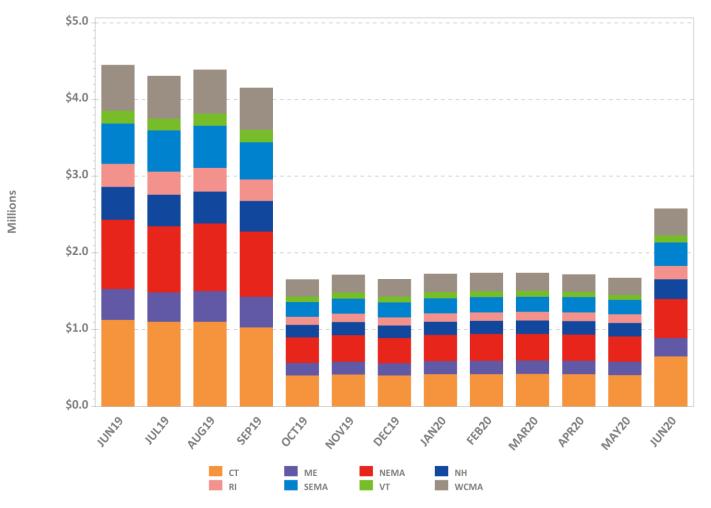
Ser DOL

0012012

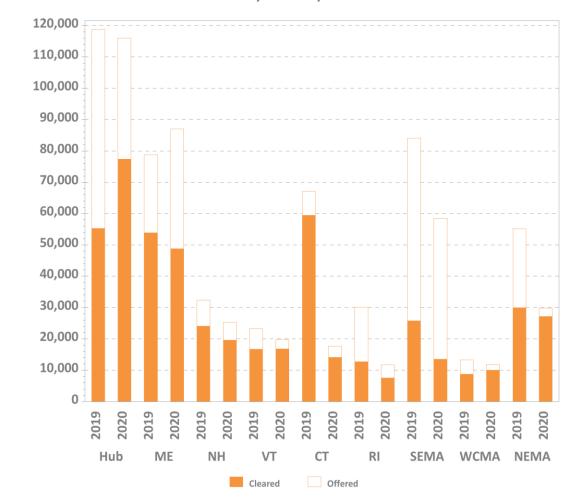
HH NY-ISO

NONDOL

Reserve Market Results – June 2020


- Maximum potential Forward Reserve Market payments of \$2.7M were reduced by credit reductions of \$53K, failure-to-reserve penalties of \$80K and failure-to-activate penalties of \$108, resulting in a net payout of \$2.6M or 95% of maximum
 - Rest of System: \$2.03M/2.16M (94%)
 - Southwest Connecticut: \$0.08M/0.08M (100%)
 - Connecticut: \$0.46M/0.47M (99%)
- \$835K total Real-Time credits were reduced by \$25K in Forward Reserve Energy Obligation Charges for a net of \$809K in Real-Time Reserve payments
 - Rest of System: 324 hours, \$586K
 - Southwest Connecticut: 324 hours, \$100K
 - Connecticut: 324 hours, \$106K
 - NEMA: 324 hours, \$18K

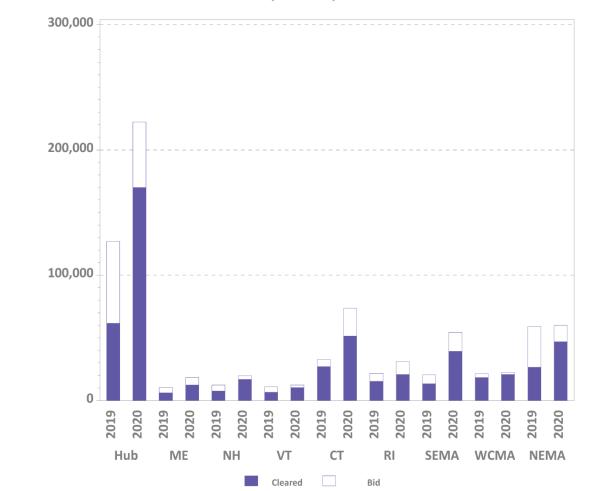
Note: "Failure to reserve" results in both credit reductions and penalties in the Locational Forward Reserve Market. While this summary reports performance by location, there were no locational requirements in effect for the current Forward Reserve auction period.


ISO-NE PUBLIC

LFRM Charges to Load by Load Zone (\$)

LFRM Charges by Zone, Last 13 Months

Zonal Increment Offers and Cleared Amounts

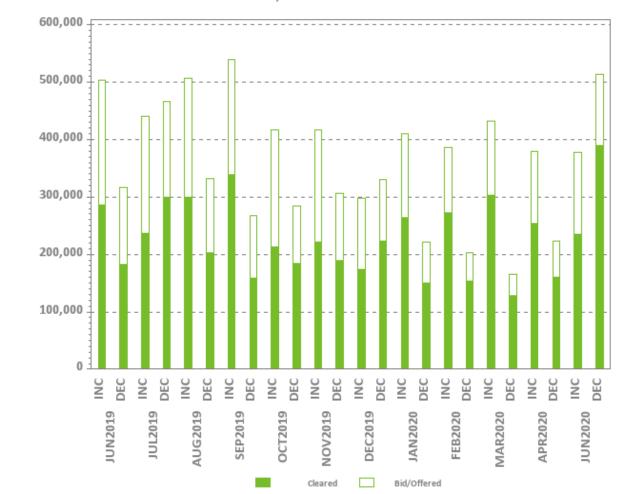

ISO-NE PUBLIC

88

June Monthly Totals by Zone

MWh

Zonal Decrement Bids and Cleared Amounts

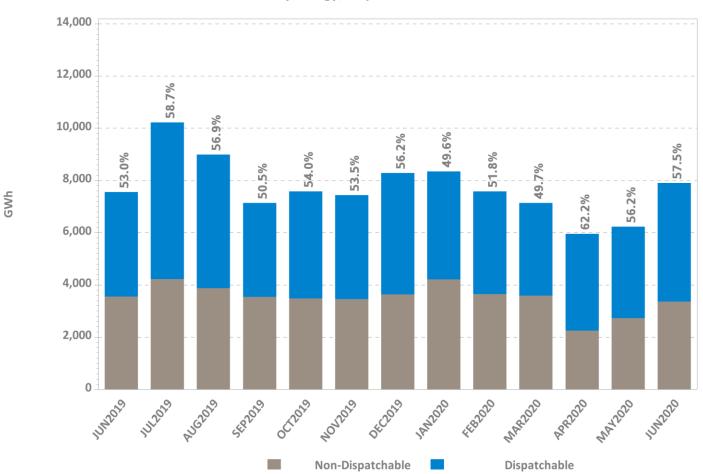

ISO-NE PUBLIC

MWh

June Monthly Totals by Zone

89

Total Increment Offers and Decrement Bids


ISO-NE PUBLIC

Zonal Level, Last 13 Months

Data excludes nodal offers and bids

MWh

Dispatchable vs. Non-Dispatchable Generation

Total Monthly Energy; Dispatchable % Shown

* Dispatchable MWh here are defined to be all generation output that is not self-committed ('must run') by the customer.

ISO-NE PUBLIC

Planning Advisory Committee (PAC)

- July 22 PAC Meeting Agenda Topics*
 - SEMA/RI 2029 Needs Assessment Update (tentative)
 - Glenbrook STATCOM Rebuild Project
 - Horton Cove Crossing Transmission Asset Condition Project
 - 2020 Economic Studies (Part 3 of 3)
 - Scope of Work for Stochastic Time Series Modeling for ISO-NE

* Agenda topics are subject to change. Visit <u>https://www.iso-ne.com/committees/planning/planning-advisory</u> for the latest PAC agendas.

Economic Studies

- Three 2019 study requests were received (NESCOE, Anbaric, and RENEW)
 - RENEW scenarios modeled varying degrees of increases in Orrington-South transfer limit
 - NESCOE and Anbaric scenarios modeled different transmission and offshore wind expansion options
- Study work is complete and results have been presented to PAC
- Efforts focused on completing the final reports
 - NESCOE report to be posted to the ISO website by July 1
 - Goal is to finish the Anbaric and RENEW reports by August 1
- NGRID submitted a 2020 economic study request
 - Assumptions are under development; presentations have been made at the May and June PAC meetings, with an additional PAC presentation scheduled for July

94

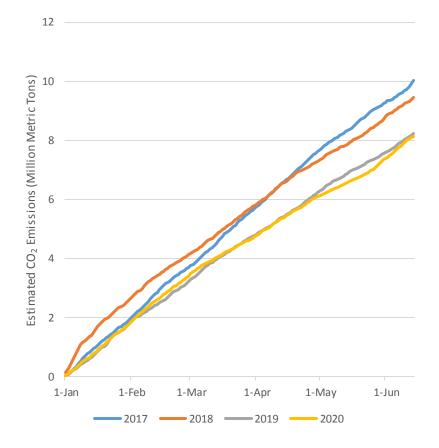
ISO-NE PUBLIC

Goal is to complete study work by Q1 2021

Environmental Issues

- The Environmental Advisory Group (EAG) held discussions in April and on June 25 to consider obstacles to reporting emissions from imports, and what actions could be taken to overcome the lack of publically-available information
- At the August PAC meeting, a presentation will be made highlighting the impacts of COVID19 to New England emissions

ISO-NE PUBLIC


Environmental Matters – Carbon Dioxide (CO₂) Emissions from Native Generation (1/1 - 6/14)

ISO-NE PUBLIC

Air Emissions Lower, Reflect Mix of Milder Weather, COVID-19

- Estimated 2020 year-to-date CO₂ system emissions declined 1% compared to same period in 2019 (1/1 - 6/14):
 - Native emitting generation in 2020 YTD (21,368 GWh) exceeded 2019 YTD (21,335 GWh) by 0.2%
 - Increased: natural gas (1.5%), landfill
 - (13.4%), refuse (1.1%) generation
 - Decreased: coal (-78%), oil (-2.4%), methane (-15.2%)
- EPA issued various guidances responding to COVID-19 pandemic, temporarily waiving compliance and reporting requirements for regulated entities, including power plants for air emissions and water discharges but:
 - Limited in scope, conditional, discretionary for EPA, not binding on states, tribes, or localities, and temporary

Cumulative CO₂ System Emissions (Million Metric Tons)

Environmental Matters – Massachusetts CO₂ **Generator Emissions Cap**

2020 MA Emissions Declined 28%, Generation Declined 34% vs. 2019

2020 CO₂ Estimated Emissions Below 2019 Trend lines

Year-to-date generation from affected generators declined 34%, while estimated emissions declined 28% compared to same period in 2019

Year-to-Date MA Generation (MWh) (1/1-6/22)

2018

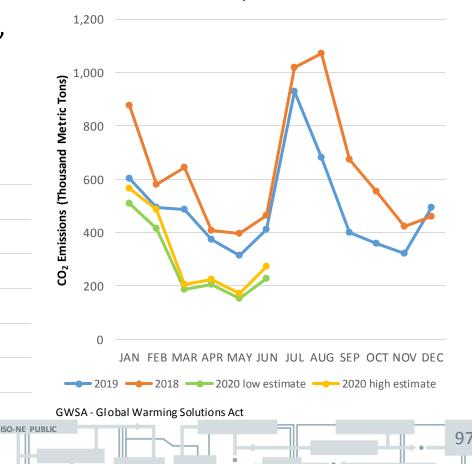
2019

2020

12

8

6


n

2017

Millions 10

2020 Estimated, Past Monthly **Emissions (Thousand Metric tons)**

GWSA 2019 Monthly Estimated Emissions

New Hampshire/Vermont 10-Year Upgrades *Status as of 6/23/20*

Project Benefit: Addresses Needs in New Hampshire and Vermont

Upgrade	Expected/ Actual In-Service	Present Stage
Eagle Substation Add: 345/115 kV autotransformer	Dec-16	4
Littleton Substation Add: Second 230/115 kV autotransformer	Oct-14	4
New C-203 230 kV line tap to Littleton NH Substation	Nov-14	4
New 115 kV overhead line, Fitzwilliam-Monadnock	Feb-17	4
New 115 kV overhead line, Scobie Pond-Huse Road	Dec-15	4
New 115 kV overhead/submarine line, Madbury-Portsmouth	May-20	4
New 115 kV overhead line, Scobie Pond-Chester	Dec-15	4

ISO-NE PUBLIC

New Hampshire/Vermont 10-Year Upgrades, cont. *Status as of 6/23/20*

Project Benefit: Addresses Needs in New Hampshire and Vermont

Upgrade	Expected/ Actual In-Service	Present Stage
Saco Valley Substation - Add two 25 MVAR dynamic reactive devices	Aug-16	4
Rebuild 115 kV line K165, W157 tap Eagle-Power Street	May-15	4
Rebuild 115 kV line H137, Merrimack-Garvins	Jun-13	4
Rebuild 115 kV line D118, Deerfield-Pine Hill	Nov-14	4
Oak Hill Substation - Loop in 115 kV line V182, Garvins-Webster	Dec-14	4
Uprate 115 kV line G146, Garvins-Deerfield	Mar-15	4
Uprate 115 kV line P145, Oak Hill-Merrimack	May-14	4

New Hampshire/Vermont 10-Year Upgrades, cont. *Status as of 6/23/20*

Project Benefit: Addresses Needs in New Hampshire and Vermont

Upgrade	Expected/ Actual In-Service	Present Stage
Upgrade 115 kV line H141, Chester-Great Bay	Nov-14	4
Upgrade 115 kV line R193, Scobie Pond-Kingston Tap	Dec-14	4
Upgrade 115 kV line T198, Keene-Monadnock	Nov-13	4
Upgrade 345 kV line 326, Scobie Pond-NH/MA Border	Dec-13	4
Upgrade 115 kV line J114-2, Greggs - Rimmon	Dec-13	4
Upgrade 345 kV line 381, between MA/NH border and NH/VT border	Jun-13	4

ISO-NE PUBLIC

Greater Hartford and Central Connecticut (GHCC) Projects* Status as of 6/23/20

Plan Benefit: Addresses long-term system needs in the four study sub-areas of Greater Hartford, Middletown, Barbour Hill and Northwestern Connecticut and increases western Connecticut import capability

Upgrade	Expected/ Actual In-Service	Present Stage
Add a 2nd 345/115 kV autotransformer at Haddam substation and reconfigure the 3- terminal 345 kV 348 line into two 2-terminal lines	Apr-17	4
Terminal equipment upgrades on the 345 kV line between Haddam Neck and Beseck (362)	Feb-17	4
Redesign the Green Hill 115 kV substation from a straight bus to a ring bus and add two 115 kV 25.2 MVAR capacitor banks	Jun-18	4
Add a 37.8 MVAR capacitor bank at the Hopewell 115 kV substation	Dec-15	4
Separation of 115 kV double circuit towers corresponding to the Branford – Branford RR line (1537) and the Branford to North Haven (1655) line and adding a 115 kV breaker at Branford 115 kV substation	Mar-17	4
Increase the size of the existing 115 kV capacitor bank at Branford Substation from 37.8 to 50.4 MVAR	Jan-17	4
Separation of 115 kV double circuit towers corresponding to the Middletown – Pratt and Whitney line (1572) and the Middletown to Haddam (1620) line	Dec-16	4

ISO-NE PUBLIC

101

* Replaces the NEEWS Central Connecticut Reliability Project

Greater Hartford and Central Connecticut Projects, cont.*

Status as of 6/23/20

Plan Benefit: Addresses long-term system needs in the four study sub-areas of Greater Hartford, Middletown, Barbour Hill and Northwestern Connecticut and increases western Connecticut import capability

Upgrade	Expected/ Actual In-Service	Present Stage
Terminal equipment upgrades on the 115 kV line from Middletown to Dooley (1050)	Jun-15	4
Terminal equipment upgrades on the 115 kV line from Middletown to Portland (1443)	Jun-15	4
Add a 3.7 mile 115 kV hybrid overhead/underground line from Newington to Southwest Hartford and associated terminal equipment including a 1.4% series reactor	Nov-20	3
Add a 115 kV 25.2 MVAR capacitor at Westside 115 kV substation	Jun-18	4
Loop the 1779 line between South Meadow and Bloomfield into the Rood Avenue substation and reconfigure the Rood Avenue substation	May-17	4
Reconfigure the Berlin 115 kV substation including two new 115 kV breakers and the relocation of a capacitor bank	Nov-17	4
Reconductor the 115 kV line between Newington and Newington Tap (1783)	Mar-20	4

ISO-NE PUBLIC

* Replaces the NEEWS Central Connecticut Reliability Project

Greater Hartford and Central Connecticut Projects, cont.*

Status as of 6/23/20

Plan Benefit: Addresses long-term system needs in the four study sub-areas of Greater Hartford, Middletown, Barbour Hill and Northwestern Connecticut and increases western Connecticut import capability

Upgrade	Expected/ Actual In-Service	Present Stage
Separation of 115 kV DCT corresponding to the Bloomfield to South Meadow (1779) line and the Bloomfield to North Bloomfield (1777) line and add a breaker at Bloomfield 115 kV substation	Dec-17	4
Separation of 115 kV DCT corresponding to the Bloomfield to North Bloomfield (1777) line and the North Bloomfield – Rood Avenue – Northwest Hartford (1751) line and add a breaker at North Bloomfield 115 kV substation	Dec-17	4
I nstall a 115 kV 3% reactor on the 115 kV line between South Meadow and Southwest Hartford (1704)	Nov-20	3
Replace the existing 3% series reactors on the 115 kV lines between Southington and Todd (1910) and between Southington and Canal (1950) with a 5% series reactors	Dec-18	4
Replace the normally open 19T breaker at Southington 115 kV with a normally closed 3% series reactor	Jun-19	4
Add a 345 kV breaker in series with breaker 5T at Southington	May-17	4

ISO-NE PUBLIC

103

* Replaces the NEEWS Central Connecticut Reliability Project

Southwest Connecticut (SWCT) Projects

Status as of 6/23/20

Plan Benefit: Addresses long-term system needs in the four study sub-areas of Frost Bridge/Naugatuck Valley, Housatonic Valley/Plumtree – Norwalk, Bridgeport, New Haven – Southington and improves system reliability

Upgrade	Expected/ Actual In-Service	Present Stage
Add a 25.2 MVAR capacitor bank at the Oxford substation	Mar-16	4
Add 2 x 25 MVAR capacitor banks at the Ansonia substation	Oct-18	4
Close the normally open 115 kV 2T circuit breaker at Baldwin substation	Sep-17	4
Reconductor the 115 kV line between Bunker Hill and Baldwin Junction (1575)	Dec-16	4
Expand Pootatuck (formerly known as Shelton) substation to 4-		
breaker ring bus configuration and add a 30 MVAR capacitor bank at	Jul-18	4
Pootatuck		
Loop the 1570 line in and out the Pootatuck substation	Jul-18	4
Replace two 115 kV circuit breakers at the Freight substation	Dec-15	4

ISO-NE PUBLIC

Status as of 6/23/20

Plan Benefit: Addresses long-term system needs in the four study sub-areas of Frost Bridge/Naugatuck Valley, Housatonic Valley/Plumtree – Norwalk, Bridgeport, New Haven – Southington and improves system reliability

Upgrade	Expected/ Actual In-Service	Present Stage
Add two 14.4 MVAR capacitor banks at the West Brookfield substation	Dec-17	4
Add a new 115 kV line from Plumtree to Brookfield Junction	Jun-18	4
Reconductor the 115 kV line between West Brookfield and Brookfield Junction (1887)	Dec-20	3
Reduce the existing 25.2 MVAR capacitor bank at the Rocky River substation to 14.4 MVAR	Apr-17	4
Reconfigure the 1887 line into a three-terminal line (Plumtree - W. Brookfield - Shepaug)	May-18	4
Reconfigure the 1770 line into 2 two-terminal lines (Plumtree - Stony Hill and Stony Hill - Bates Rock)	May-18	4
Install a synchronous condenser (+25/-12.5 MVAR) at Stony Hill	Jun-18	4
Relocate an existing 37.8 MVAR capacitor bank at Stony Hill to the 25.2 MVAR capacitor bank side	May-18	4

ISO-NE PUBLIC

Status as of 6/23/20

Plan Benefit: Addresses long-term system needs in the four study sub-areas of Frost Bridge/Naugatuck Valley, Housatonic Valley/Plumtree – Norwalk, Bridgeport, New Haven – Southington and improves system reliability

Upgrade	Expected/ Actual In-Service	Present Stage
Relocate the existing 37.8 MVAR capacitor bank from 115 kV B bus to 115 kV A bus at the Plumtree substation	Apr-17	4
Add a 115 kV circuit breaker in series with the existing 29T breaker at the Plumtree substation	May-16	4
Terminal equipment upgrade at the Newtown substation (1876)	Dec-15	4
Rebuild the 115 kV line from Wilton to Norwalk (1682) and upgrade Wilton substation terminal equipment	Jun-17	4
Reconductor the 115 kV line from Wilton to Ridgefield Junction (1470-1)	Dec-19	4
Reconductor the 115 kV line from Ridgefield Junction to Peaceable (1470-3)	Dec-19	4

ISO-NE PUBLIC

Status as of 6/23/20

Plan Benefit: Addresses long-term system needs in the four study sub areas of Frost Bridge/Naugatuck Valley, Housatonic Valley/Plumtree – Norwalk, Bridgeport, New Haven – Southington and improves system reliability

Upgrade	Expected/ Actual In-Service	Present Stage
Add 2 x 20 MVAR capacitor banks at the Hawthorne substation	Mar-16	4
Upgrade the 115 kV bus at the Baird substation	Mar-18	4
Upgrade the 115 kV bus system and 11 disconnect switches at the Pequonnock substation	Dec-14	4
Add a 345 kV breaker in series with the existing 11T breaker at the East Devon substation	Dec-15	4
Rebuild the 115 kV lines from Baird to Congress (8809A / 8909B)	Dec-18	4
Rebuild the 115 kV lines from Housatonic River Crossing (HRX) to Barnum to Baird (88006A / 89006B)	Jun-21	3

ISO-NE PUBLIC

Status as of 6/23/20

Plan Benefit: Addresses long-term system needs in the four study sub areas of Frost Bridge/Naugatuck Valley, Housatonic Valley/Plumtree – Norwalk, Bridgeport, New Haven – Southington and improves system reliability

Upgrade	Expected/ Actual In-Service	Present Stage
Remove the Sackett phase shifter	Mar-17	4
Install a 7.5 ohm series reactor on 1610 line at the Mix Avenue substation	Dec-16	4
Add 2 x 20 MVAR capacitor banks at the Mix Avenue substation	Dec-16	4
Upgrade the 1630 line relay at North Haven and Wallingford 1630 terminal equipment	Jan-17	4
Rebuild the 115 kV lines from Devon Tie to Milvon (88005A / 89005B)	Nov-16	4
Replace two 115 kV circuit breakers at Mill River	Dec-14	4

ISO-NE PUBLIC

Greater Boston Projects

Status as of 6/23/20

Plan Benefit: Addresses long-term system needs in the Greater Boston area and improves system reliability

Upgrade	Expected/ Actual In-Service	Present Stage
Install new 345 kV line from Scobie to Tewksbury	Dec-17	4
Reconductor the Y-151 115 kV line from Dracut Junction to Power Street	Apr-17	4
Reconductor the M-139 115 kV line from Tewksbury to Pinehurst and associated work at Tewksbury	May-17	4
Reconductor the N-140 115 kV line from Tewksbury to Pinehurst and associated work at Tewksbury	May-17	4
Reconductor the F-158N 115 kV line from Wakefield Junction to Maplewood and associated work at Maplewood	Dec-15	4
Reconductor the F-158S 115 kV line from Maplewood to Everett	Jun-19	4
Install new 345 kV cable from Woburn to Wakefield Junction, install two new 160 MVAR variable shunt reactors and associated work at Wakefield Junction and Woburn*	Dec-21	3*
Refurbish X-24 69 kV line from Millbury to Northboro Road	Dec-15	4
Reconductor W-23W 69 kV line from Woodside to Northboro Road	Jun-19	4

ISO-NE PUBLIC

* Substation portion of the project is a Present Stage status 4

Greater Boston Projects, cont. *Status as of 6/23/20*

Plan Benefit: Addresses long-term system needs in the Greater Boston area and improves system reliability

Upgrade	Expected/ Actual In-Service	Present Stage
Separate X-24 and E-157W DCT	Dec-18	4
Separate Q-169 and F-158N DCT	Dec-15	4
Reconductor M-139/211-503 and N-140/211-504 115 kV lines from Pinehurst to North Woburn tap	May-17	4
Install new 115 kV station at Sharon to segment three 115 kV lines from West Walpole to Holbrook	Oct-20	3
Install third 115 kV line from West Walpole to Holbrook	Oct-20	3
Install new 345 kV breaker in series with the 104 breaker at Stoughton	May-16	4
Install new 230/115 kV autotransformer at Sudbury and loop the 282-602 230 kV line in and out of the new 230 kV switchyard at Sudbury	Dec-17	4
Install a new 115 kV line from Sudbury to Hudson	Dec-23	2

ISO-NE PUBLIC

Greater Boston Projects, cont.

Status as of 6/23/20

Plan Benefit: Addresses long-term system needs in the Greater Boston area and improves system reliability

Expected/ Actual In-Service	Present Stage
Dec-19	4
May-17	4
Dec-17	4
Aug-16	4
Dec-16	4
May-17	4
May-19	4
Jun-16	4
May-21	3
Dec-20	3
	Actual In-Service Dec-19 May-17 Dec-17 Aug-16 Dec-16 May-17 May-19 Jun-16 May-21

Greater Boston Projects, cont.

Status as of 6/23/20

Plan Benefit: Addresses long-term system needs in the Greater Boston area and improves system reliability

Upgrade	Expected/ Actual In-Service	Present Stage
Install a second 115 kV cable from Mystic to Woburn to create a bifurcated 211-514 line	Dec-21	3
Open lines 329-510/511 and 250-516/517 at Mystic and Chatham, respectively. Operate K Street as a normally closed station.	May-19	4
Upgrade Kingston to create a second normally closed 115 kV bus tie and reconfigure the 345 kV switchyard	Mar-19	4
Relocate the Chelsea capacitor bank to the 128-518 termination postion	Dec-16	4

ISO-NE PUBLIC

Greater Boston Projects, cont.

Status as of 6/23/20

Plan Benefit: Addresses long-term system needs in the Greater Boston area and improves system reliability

Upgrade	Expected/ Actual In-Service	Present Stage
Upgrade North Cambridge to mitigate 115 kV 5 and 10 stuck breaker contingencies	Dec-17	4
Install a 200 MVAR STATCOM at Coopers Mills	Nov-18	4
Install a 115 kV 36.7 MVAR capacitor bank at Hartwell	May-17	4
Install a 345 kV 160 MVAR shunt reactor at K Street	Dec-19	4
Install a 115 kV breaker in series with the 5 breaker at Framingham	Apr-17	4
Install a 115 kV breaker in series with the 29 breaker at K Street	Apr-17	4

ISO-NE PUBLIC

Pittsfield/Greenfield Projects

Status as of 6/23/20

Project Benefit: Addresses system needs in the Pittsfield/Greenfield area in Western Massachusetts

Upgrade	Expected/ Actual In-Service	Present Stage
Separate and reconductor the Cabot Taps (A-127 and Y-177 115 kV lines)	Mar-17	4
Install a 115 kV tie breaker at the Harriman Station, with associated buswork, reconductor of buswork and new control house	Nov-17	4
Modify Northfield Mountain 16R Substation and install a 345/115 kV autotransformer	Jun-17	4
Build a new 115 kV three-breaker switching station (Erving) ring bus	Mar-17	4
Build a new 115 kV line from Northfield Mountain to the new Erving Switching Station	Jun-17	4
Install 115 kV 14.4 MVAR capacitor banks at Cumberland, Podick and Amherst Substations	Dec-15	4

ISO-NE PUBLIC

Pittsfield/Greenfield Projects, cont.

Status as of 6/23/20

Project Benefit: Addresses system needs in the Pittsfield/Greenfield area in Western Massachusetts

Upgrade	Expected/ Actual In-Service	Present Stage
Rebuild the Cumberland to Montague 1361 115 kV line and terminal work at Cumberland and Montague. At Montague Substation, reconnect Y177 115 kV line into 3T/4T position and perform other associated substation work	Dec-16	4
Remove the sag limitation on the 1512 115 kV line from Blandford Substation to Granville Junction and remove the limitation on the 1421 115 kV line from Pleasant to Blandford Substation	Dec-14	4
Loop the A127W line between Cabot Tap and French King into the new Erving Substation	Mar-17	4
Reconductor A127 between Erving and Cabot Tap and replace switches at Wendell Depot	Apr-15	4

ISO-NE PUBLIC

Pittsfield/Greenfield Projects, cont.

Status as of 6/23/20

Project Benefit: Addresses system needs in the Pittsfield/Greenfield area in Western Massachusetts

Upgrade	Expected/ Actual In-Service	Present Stage
Install a 115 kV 20.6 MVAR capacitor at the Doreen substation and operate the 115 kV 13T breaker N.O.	Oct-17	4
Install a 75-150 MVAR variable reactor at Northfield substation	Dec-17	4
Install a 75-150 MVAR variable reactor at Ludlow substation	Dec-17	4
Construct a 115 kV three-breaker ring bus at or adjacent to Pochassic 37R Substation, loop line 1512-1 into the new three-breaker ring bus, construct a new line connecting the new three-breaker ring bus to the Buck Pond 115 kV Substation on the vacant side of the double-circuit towers that carry line 1302-2, add a new breaker to the Buck Pond 115 kV straight bus and reconnect lines 1302-2, 1657-2 and transformer 2X into new positions	Jun-20	4

ISO-NE PUBLIC

SEMA/RI Reliability Projects

Status as of 6/23/20

Project Benefit: Addresses system needs in the Southeast Massachusetts/Rhode Island area

Project ID	Upgrade	Expected/ Actual In-Service	Present Stage
1714	Construct a new 115 kV GIS switching station (Grand Army) which includes remote terminal station work at Brayton Point and Somerset substations, and the looping in of the E- 183E, F-184, X3, and W4 lines	Sep-20	3
1742	Conduct remote terminal station work at the Wampanoag and Pawtucket substations for the new Grand Army GIS switching station	Nov-20	3
1715	Install upgrades at Brayton Point substation which include a new 115 kV breaker, new 345/115 kV transformer, and upgrades to E183E, F184 station equipment	Oct-20	3
1716	Increase clearances on E-183E & F-184 lines between Brayton Point and Grand Army substations	Nov-19	4
1717	Separate the X3/W4 DCT and reconductor the X3 and W4 lines between Somerset and Grand Army substations; reconfigure Y2 and Z1 lines	Nov-19	4

ISO-NE PUBLIC

Status as of 6/23/20

Project Benefit: Addresses system needs in the Southeast Massachusetts/Rhode Island area

Project ID	Upgrade	Expected/ Actual In-Service	Present Stage
1718	Add 115 kV circuit breaker at Robinson Ave substation and re-terminate the Q10 line	Dec-20	3
1719	Install 45.0 MVAR capacitor bank at Berry Street substation	Dec-20	2*
1720	Separate the N12/M13 DCT and reconductor the N12 and M13 between Somerset and Bell Rock substations	Nov-21	2
1721	Reconfigure Bell Rock to breaker-and-a-half station, split the M13 line at Bell Rock substation, and terminate 114 line at Bell Rock; install a new breaker in series with N12/D21 tie breaker, upgrade D21 line switch, and install a 37.5 MVAR capacitor	Dec-21	2
1722	Extend the Line 114 from the Dartmouth town line (Eversource- NGRID border) to Bell Rock substation	Dec-21	2
1723	Reconductor L14 and M13 lines from Bell Rock substation to Bates Tap	Sep-21	2*

118

* The ISO is reevaluating this project with updated data and assumptions.

Status as of 6/23/20

Project Benefit: Addresses system needs in the Southeast Massachusetts/Rhode Island area

Project ID	Upgrade	Expected/ Actual In-Service	Present Stage
1725	Build a new 115 kV line from Bourne to West Barnstable substations which includes associated terminal work	Dec-23	1*
1726	Separate the 135/122 DCT from West Barnstable to Barnstable substations	Dec-21	1
1727	Retire the Barnstable SPS	Dec-21	1
1728	Build a new 115 kV line from Carver to Kingston substations and add a new Carver terminal	Dec-22	1
1729	Install a new bay position at Kingston substation to accommodate new 115 kV line	Dec-22	1
1730	Extend the 114 line from the Eversource/National Grid border to the Industrial Park Tap	Dec-21	1

ISO-NE PUBLIC

119

* The ISO is reevaluating this project with updated data and assumptions.

Status as of 6/23/20

Project Benefit: Addresses system needs in the Southeast Massachusetts/Rhode Island area

Project ID	Upgrade	Expected/ Actual In-Service	Present Stage
1731	Install 35.3 MVAR capacitors at High Hill and Wing Lane substations	Dec-21	2
1732	Loop the 201-502 line into the Medway substation to form the 201-502N and 201-502S lines	Jan-23	1
1733	Separate the 325/344 DCT lines from West Medway to West Walpole substations	Dec-21	1**
1734	Reconductor and upgrade the 112 Line from the Tremont substation to the Industrial Tap	Jun-18	4
1736	Reconductor the 108 line from Bourne substation to Horse Pond Tap*	Oct-18	4
1737	Replace disconnect switches on 323 line at West Medway substation and replace 8 line structures	Dec-20	3

ISO-NE PUBLIC

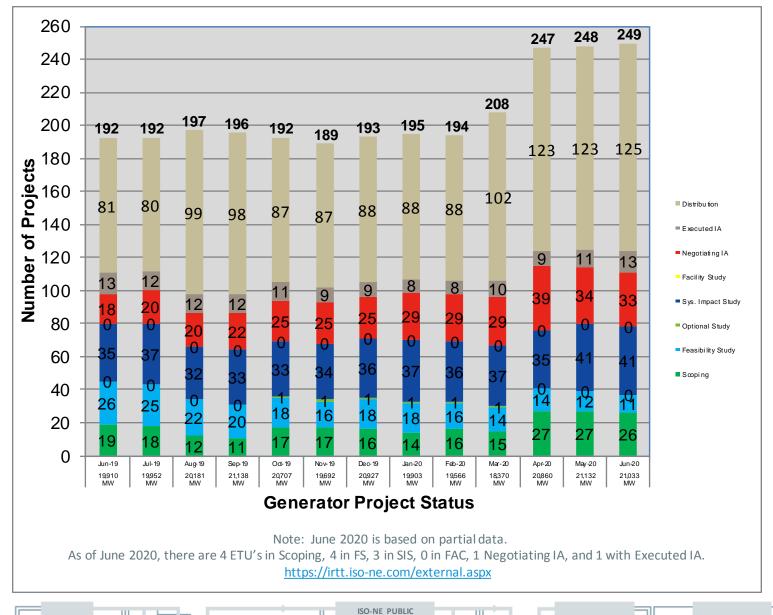
120

* Does not include the reconductoring work over the Cape Cod canal

** The ISO is reevaluating this project with updated data and assumptions.

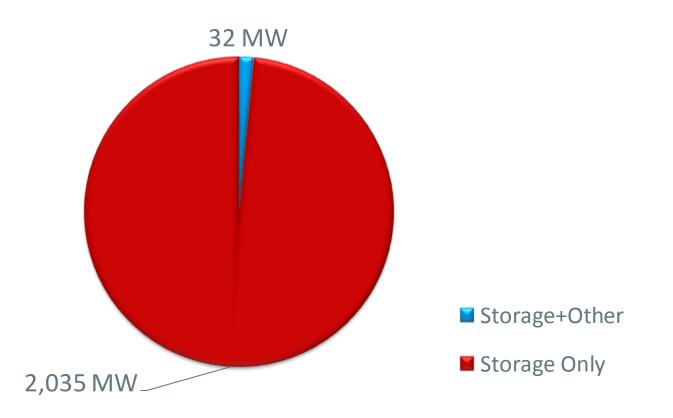
Status as of 6/23/20

Project Benefit: Addresses system needs in the Southeast Massachusetts/Rhode Island area


Project ID	Upgrade	Expected/ Actual In-Service	Present Stage
1741	Rebuild the Middleborough Gas and Electric portion of the E1 line from Bridgewater to Middleborough	Apr-19	4
1782	Reconductor the J16S line	Dec-21	2*
1724	Replace the Kent County 345/115 kV transformer	Feb-21	2*
1789	West Medway 345 kV circuit breaker upgrades	Dec-21	3
1790	Medway 115 kV circuit breaker replacements	Dec-21	3

ISO-NE PUBLIC

121


* The ISO is reevaluating this project with updated data and assumptions.

Status of Tariff Studies

What is in the Queue (as of June 25, 2020)

Storage Projects are proposed as stand-alone storage or as co-located with wind or solar projects

ISO-NE PUBLIC

OPERABLE CAPACITY ANALYSIS

Summer 2020 Analysis

Summer 2020 Operable Capacity Analysis

50/50 Load Forecast (Reference)	Sep 2020 ² CSO (MW)	Sep 2020² SCC (MW)
Operable Capacity MW ¹	30,156	31,422
Active Demand Capacity Resource (+) ⁵	537	442
External Node Available Net Capacity, CSO imports minus firm capacity exports (+)	584	584
Non Commercial Capacity (+)	7	7
Non Gas-fired Planned Outage MW (-)	2,567	2,605
Gas Generator Outages MW (-)	66	90
Allowance for Unplanned Outages (-) ⁴	2,100	2,100
Generation at Risk Due to Gas Supply (-) ³	0	0
Net Capacity (NET OPCAP SUPPLY MW)	26,551	27,660
Peak Load Forecast MW(adjusted for Other Demand Resources) ²	25,125	25,125
Operating Reserve Requirement MW	2,305	2,305
Operable Capacity Required (NET LOAD OBLIGATION MW)	27,430	27,430
Operable Capacity Margin	-879	230

¹Operable Capacity is based on data as of **June 24, 2020** and does not include Capacity associated with Settlement Only Generators, Passive and Active Demand Response, and external capacity. The Capacity Supply Obligation (CSO) and Seasonal Claim Capability (SCC) values are based on data as of **June 24, 2020**.

² Load forecast that is based on the 2020 CELT report and represents the week with the lowest Operable Capacity Margin, week beginning September 12, 2020.

³ Total of (Gas at Risk MW) – (Gas Gen Outages MW).

⁴ Allowance For Unplanned Outage MW is based on the month corresponding to the day with the lowest Operable Capacity Margin for the week.

⁵ Active Demand Capacity Resources (ADCRs) can participate in the Forward Capacity Market (FCM), have the ability to obtain a CSO and also participate in the Day-Ahead and Real-Time Energy Markets.

ISO-NE PUBLIC

Summer 2020 Operable Capacity Analysis

90/10 Load Forecast (Extreme)	Sep 2020 ² CSO (MW)	Sep 2020 ² SCC (MW)
Operable Capacity MW ¹	30,156	31,422
Active Demand Capacity Resource (+) ⁵	537	442
External Node Available Net Capacity, CSO imports minus firm capacity exports (+)	584	584
Non Commercial Capacity (+)	7	7
Non Gas-fired Planned Outage MW (-)	2,567	2,605
Gas Generator Outages MW (-)	66	90
Allowance for Unplanned Outages (-) ⁴	2,100	2,100
Generation at Risk Due to Gas Supply (-) 3	0	0
Net Capacity (NET OPCAP SUPPLY MW)	26,551	27,660
Peak Load Forecast MW(adjusted for Other Demand Resources) ²	27,084	27,084
Operating Reserve Requirement MW	2,305	2,305
Operable Capacity Required (NET LOAD OBLIGATION MW)	29,389	29,389
Operable Capacity Margin	-2,838	-1,729

¹Operable Capacity is based on data as of **June 24, 2020** and does not include Capacity associated with Settlement Only Generators, Passive and Active Demand Response, and external capacity. The Capacity Supply Obligation (CSO) and Seasonal Claim Capability (SCC) values are based on data as of **June 24, 2020**.

² Load forecast that is based on the 2020 CELT report and represents the week with the lowest Operable Capacity Margin, week beginning **September 12, 2020**. ³ Total of (Gas at Risk MW) – (Gas Gen Outages MW).

⁴ Allowance For Unplanned Outage MW is based on the month corresponding to the day with the lowest Operable Capacity Margin for the week.

⁵ Active Demand Capacity Resources (ADCRs) can participate in the Forward Capacity Market (FCM), have the ability to obtain a CSO and also participate in the Day-Ahead and Real-Time Energy Markets.

ISO-NE PUBLIC

Summer 2020 Operable Capacity Analysis 50/50 Forecast (Reference)

ISO-NE OPERABLE CAPACITY ANALYSIS

June 26, 2020 - 50-50 FORECAST using CSO

This analysis is a tabulation of weekly assessments shown in one single table. The information shows the operable capacity situation under assumed conditions for each week. It is not expected that the system peak will occur every week during June, July, August, and Mid September

STUDY WEEK (Week Beginning,	AVAILABLE OPCAP MW	Active Capacity Demand MW	EXTERNAL NODE AVAIL CAPACITY MW	NON COMMERCIAL CAPACITY MW	NON-GAS PLANNED OUTAGES CSO MW	GAS GENERATOR OUTAGES CSO MW	ALLOWANCE FOR UNPLANNED OUTAGES MW	GAS AT RISK MW	NET OPCAP SUPPLY MW	PEAK LOAD FORECAST MW	OPER RESERVE REQUIREMENT MW	NET LOAD OBLIGATION MW	OPCAP MARGIN MW
Saturday)	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]
7/4/2020	29856	392	1101	7	109	0	2100	0	29147	25125	2305	27430	1717
7/11/2020	29856	392	1101	7	101	0	2100	0	29155	25125	2305	27430	1725
7/18/2020	29856	392	1101	7	69	0	2100	0	29187	25125	2305	27430	1757
7/25/2020	29856	392	1101	7	95	0	2100	0	29161	25125	2305	27430	1731
8/1/2020	30156	537	1025	7	305	0	2100	0	29320	25125	2305	27430	1890
8/8/2020	30156	537	1025	7	847	0	2100	0	28778	25125	2305	27430	1348
8/15/2020	30156	537	1025	7	859	0	2100	0	28766	25125	2305	27430	1336
8/22/2020	30156	537	1025	7	619	0	2100	0	29006	25125	2305	27430	1576
8/29/2020	30156	537	1025	7	774	0	2100	0	28851	25125	2305	27430	1421
9/5/2020	30156	537	1025	7	1089	0	2100	0	28536	25125	2305	27430	1106
9/12/2020	30156	537	584	7	2567	66	2100	0	26551	25125	2305	27430	-879

1. Available OPCAP MW based on resource Capacity Supply Obligations, CSO. Does not include Settlement Only Generators.

2. The active demand resources known as Real-Time Demand Response (RTDR) will become Active Demand Capacity Resources (ADCRs) and can participate in the Forward Capacity Market (FCM).

These resources will have the ability to obtain a CSO and also participate in the Day-Ahead and Real-Time Energy Markets.

3. External Node Available Capacity MW based on the sum of external Capacity Supply Obligations (CSO) imports and exports.

4. New resources and generator improvements that have acquired a CSO but have not become commercial.

5. Non-Gas Planned Outages is the total of Non Gas-fired Generator/DARD Outages for the period. This value would also include any known long-term Non Gas-fired Forced Outages.

6. All Planned Gas-fired generation outage for the period. This value would also include any known long-term Gas-fired Forced Outages.

7. Allowance for Unplanned Outages includes forced outages and maintenance outages scheduled less than 14 days in advance per ISO New England Operating Procedure No. 5 Appendix A.

8. Generation at Risk due to Gas Supply pertains to gas fired capacity expected to be at risk during cold weather conditions or gas pipeline maintenance outages.

9. Net OpCap Supply MW Available (1 + 2 + 3 + 4 - 5 - 6 - 7 - 8 = 9)

10. Peak Load Forecast as provided in the 2020 CELT Report and adjusted for Passive Demand Resources assumes Peak Load Exposure (PLE) of 25,125 and does include credit

of Passive Demand Response (PDR) and behind-the-meter PV (BTM PV)

11. Operating Reserve Requirement based on 120% of first largest contingency plus 50% of the second largest contingency.

12. Total Net Load Obligation per the formula(10 + 11 = 12)

13. Net OPCAP Margin MW = Net Op Cap Supply MW minus Net Load Obligation (9 - 12 = 13)

ISO-NE PUBLIC

Summer 2020 Operable Capacity Analysis 90/10 Forecast (Extreme)

ISO-NE OPERABLE CAPACITY ANALYSIS

June 26, 2020 - 90-10 FORECAST using CSO

This analysis is a tabulation of weekly assessments shown in one single table. The information shows the operable capacity situation under assumed conditions for each week. It is not expected that the system peak will occur every week during June, July, August, and Mid September

		Active	EXTERNAL NODE AVAIL	NON	NON-GAS PLANNED	GAS GENERATOR	ALLOWANCE FOR				OPER RESERVE		
STUDY WEEK (Week Beginning,	AVAILABLE OPCAP MW	Capacity Demand MW	CAPACITY MW	COMMERCIAL CAPACITY MW	OUTAGES CSO MW	OUTAGES CSO MW	UNPLANNED OUTAGES MW	GAS AT RISK MW	NET OPCAP SUPPLY MW	PEAK LOAD FORECAST MW	REQUIREMENT MW	NET LOAD OBLIGATION MW	OPCAP MARGIN MW
Saturday)	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]
7/4/2020	29856	392	1101	7	109	0	2100	0	29147	27084	2305	29389	-242
7/11/2020	29856	392	1101	7	101	0	2100	0	29155	27084	2305	29389	-234
7/18/2020	29856	392	1101	7	69	0	2100	0	29187	27084	2305	29389	-202
7/25/2020	29856	392	1101	7	95	0	2100	0	29161	27084	2305	29389	-228
8/1/2020	30156	537	1025	7	305	0	2100	0	29320	27084	2305	29389	-69
8/8/2020	30156	537	1025	7	847	0	2100	0	28778	27084	2305	29389	-611
8/15/2020	30156	537	1025	7	859	0	2100	0	28766	27084	2305	29389	-623
8/22/2020	30156	537	1025	7	619	0	2100	0	29006	27084	2305	29389	-383
8/29/2020	30156	537	1025	7	774	0	2100	0	28851	27084	2305	29389	-538
9/5/2020	30156	537	1025	7	1089	0	2100	0	28536	27084	2305	29389	-853
9/12/2020	30156	537	584	7	2567	66	2100	0	26551	27084	2305	29389	-2838

ISO-NE PUBLIC

128

1. Available OPCAP MW based on resource Capacity Supply Obligations, CSO. Does not include Settlement Only Generators.

2. The active demand resources known as Real-Time Demand Response (RTDR) will become Active Demand Capacity Resources (ADCRs) and can participate in the Forward Capacity Market (FCM).

These resources will have the ability to obtain a CSO and also participate in the Day-Ahead and Real-Time Energy Markets.

3. External Node Available Capacity MW based on the sum of external Capacity Supply Obligations (CSO) imports and exports.

4. New resources and generator improvements that have acquired a CSO but have not become commercial.

5. Non-Gas Planned Outages is the total of Non Gas-fired Generator/DARD Outages for the period. This value would also include any known long-term Non Gas-fired Forced Outages.

6. All Planned Gas-fired generation outage for the period. This value would also include any known long-term Gas-fired Forced Outages.

7. Allowance for Unplanned Outages includes forced outages and maintenance outages scheduled less than 14 days in advance per ISO New England Operating Procedure No. 5 Appendix A.

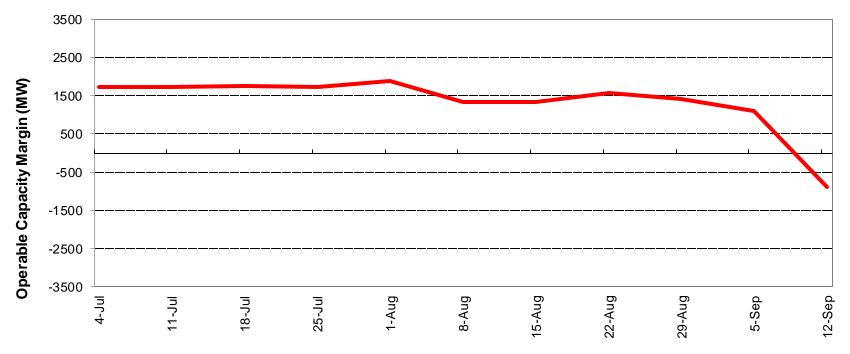
8. Generation at Risk due to Gas Supply pertains to gas fired capacity expected to be at risk during cold weather conditions or gas pipeline maintenance outages.

9. Net OpCap Supply MW Available (1 + 2 + 3 + 4 - 5 - 6 - 7 - 8 = 9)

10. Peak Load Forecast as provided in the 2020 CELT Report and adjusted for Passive Demand Resources assumes Peak Load Exposure (PLE) of 27,084 and does include credit

of Passive Demand Response (PDR) and behind-the-meter PV (BTM PV)

11. Operating Reserve Requirement based on 120% of first largest contingency plus 50% of the second largest contingency.

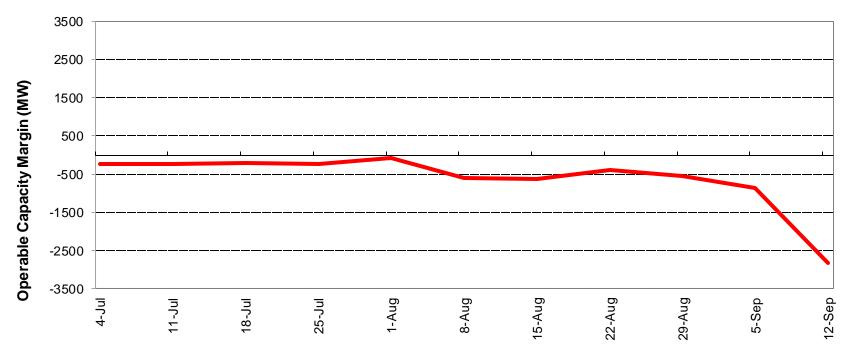

12. Total Net Load Obligation per the formula(10 + 11 = 12)

13. Net OPCAP Margin MW = Net Op Cap Supply MW minus Net Load Obligation (9 - 12 = 13)

*Highlighted week is based on the week determined by the 50/50 Load Forecast Reference week

Summer 2020 Operable Capacity Analysis 50/50 Forecast (Reference)

2020 ISO-NEW ENGLAND OPERABLE CAPACITY -50/50 CSO-


July 4, 2020 - September 18, 2020 W/B Saturday

129

ISO-NE PUBLIC

Summer 2020 Operable Capacity Analysis 90/10 Forecast (Extreme)

2020 ISO-NEW ENGLAND OPERABLE CAPACITY -90/10 CSO-

July 4, 2020 - September 18, 2020 W/B Saturday

130

ISO-NE PUBLIC

OPERABLE CAPACITY ANALYSIS

Appendix

Possible Relief Under OP4: Appendix A

OP 4 Action Number	Page 1 of 2 Action Description	Amount Assumed Obtainable Under OP 4 (MW)
1	Implement Power Caution and advise Resources with a CSO to prepare to provide capacity and notify "Settlement Only" generators with a CSO to monitor reserve pricing to meet those obligations.	0 1
	Begin to allow the depletion of 30-minute reserve.	600
2	Declare Energy Emergency Alert (EEA) Level 1 ⁴	0
3	Voluntary Load Curtailment of Market Participants' facilities.	40 ²
4	Implement Power Watch	0
5	Schedule Emergency Energy Transactions and arrange to purchase Control Area-to- Control Area Emergency	1,000
6	Voltage Reduction requiring > 10 minutes	125 ³

NOTES:

1. Based on Summer Ratings. Assumes 25% of total MW Settlement Only resources <5 MW will be available and respond.

2. The actual load relief obtained is highly dependent on circumstances surrounding the appeals, including timing and the amount of advanced notice that can be given.

132

ISO-NE PUBLIC

3. The MW values are based on a 25,000 MW system load and verified by the most recent voltage reduction test.

4. EEA Levels are described in Attachment 1 to NERC Reliability Standard EOP-011 - Emergency Operations

Possible Relief Under OP4: Appendix A

OP 4 Action Number	Page 2 of 2 Action Description	Amount Assumed Obtainable Under OP 4 (MW)
7	Request generating resources not subject to a Capacity Supply Obligation to voluntary provide energy for reliability purposes	0
8	5% Voltage Reduction requiring 10 minutes or less	250 ³
9	Transmission Customer Generation Not Contractually Available to Market Participants during a Capacity Deficiency.	5
	Voluntary Load Curtailment by Large Industrial and Commercial Customers.	200 ²
10	Radio and TV Appeals for Voluntary Load Curtailment Implement Power Warning	200 ²
11	Request State Governors to Reinforce Power Warning Appeals.	100 ²
Total		2,520

NOTES:

1. Based on Summer Ratings. Assumes 25% of total MW Settlement Only resources <5 MW will be available and respond.

2. The actual load relief obtained is highly dependent on circumstances surrounding the appeals, including timing and the amount of advanced notice that can be given.

ISO-NE PUBLIC

133

3. The MW values are based on a 25,000 MW system load and verified by the most recent voltage reduction test

4. EEA Levels are described in Attachment 1 to NERC Reliability Standard EOP-011 - Emergency Operations