A Dynamic Clean Energy Market
Straw Proposal for a Long-Term IMAPP Design

PRESENTED AT
NEPOOL Integrating Markets and Public Policy Forum

PREPARED BY
The Brattle Group
Kathleen Spees Judy Chang

Coalition Partners
Conservation Law Foundation
Brookfield Renewable
NextEra Energy Resources
Robert Stoddard

May 17, 2017

THE Brattle GROUP
Contents

- Background and Introduction
- Design Concept
- Base and Premium Products
- Forward Auction
- Advantages and Disadvantages
- Further Considerations
Background and Introduction

As a part of the IMAPP process, The Brattle Group is working with CLF, Brookfield and NextEra to develop a centralized clean energy market design for New England to support and help meet the states’ public policy needs.

The long-term objectives of this design include providing states the:

- **Opportunity to use a centralized market** to purchase clean energy
- **Ability to procure the least cost** clean energy resources
- **Ability to attract new and retain essential resources** to cost-effectively reduce GHG emissions
- **Visibility of competitive prices** by placing resources on equal footing
- **Participation of innovative technologies and resources**
- **Ability to share costs** in alignment with state objectives

This approach can be adapted to states’ evolving goals while providing suppliers an opportunity to obtain sufficient revenue certainty to invest in the resources needed to meet New England’s long-term GHG emission reduction goals.

We are seeking input and suggestions for improvements and refinements....
Background and Introduction

Overview of Proposed Design Package

This market design has the following key elements:

- Auction procures the **clean energy attribute only** (not bundled with energy)
- Purchases via this market **fulfill majority of states needs**, but possibly less than 100%
- Enable **competition among all clean energy resources** to yield least cost portfolio to meet the states’ policy goals
- **Auction procures two (or more) products**: “Base” product for **all** existing or new clean energy resources, and “Premium” product for **new** resources
- States/utilities submit **demand bids** that specify the quantity needed, and the price they are willing to pay; can also use a sloping demand curve
- **Work seamlessly with the energy and ancillary service markets**

A note on carbon pricing: This coalition continues to recommend enhanced CO$_2$ pricing as a means to efficiently contribute to achieving decarbonization goals. This clean energy market can work well alongside enhanced CO$_2$ pricing, or on a stand-alone basis
Design Concept

“Dynamic” Clean Energy Payments

The centerpiece of this design proposal is a new “carbon-linked” dynamic clean energy payment

- Flat payments over every hour
- Incentive to offer at negative energy prices during excess energy hours

- Payments scale in proportion to marginal CO₂ emissions
- Incentive to produce clean energy when and where it avoids the most CO₂ emissions
- No incentive to offer at negative prices
Design Concept

Anchor Price and Dynamic Payments

- A **Reference Emissions Rate** is set prior to the forward auction (for example, at the average system-wide marginal emissions rate, such as 1,100 lbs/MWh)
- Clearing price in the forward market sets an **Anchor Price** based on the Reference Emissions Rate
- **Realized Payments** to individual resources scale dynamically in proportion to realized **Marginal Emissions Rate** at the time and place of delivery (mimics CO₂ pricing incentives for clean energy resources)
 - The ISO would calculate the marginal emissions rate along with calculating energy prices at every node (both day-ahead and real time)
- Clean energy suppliers earn:

 \[
 \text{Payments} = \frac{\text{Marginal Emissions Rate}}{\text{Reference Emissions Rate}} \times \text{Anchor Price}
 \]
Incentives for Clean Energy in the Right Locations

Location-specific payments will focus incentives to develop new clean energy where they will displace the most CO₂ emissions.

Low-Emitting Location
Generation pocket that is already saturated with wind. New clean energy will mostly displace the generation of existing wind resources (and will earn fewer payments).

High-Emitting Location
Load pocket where high-emitting steam oil units are often called on. Clean energy will displace more emissions (and earn more payments).
Design Concept

Incentives at the Right Times (Including for Storage)

Dynamic payments incentivize clean energy at the right times to displace the most CO₂ emissions. Unlike other policies, storage can compete with other technologies.

Storage Participation for Dynamic Clean Payments

- **Charging**
 - Pay Energy + Dynamic Clean Price When Charging

- **Discharging**
 - Earn Energy + Dynamic Clean Price When Discharging

Dynamic Clean Payments

Market Energy Price
States submit the demand for clean energy, and the maximum willingness to pay. States can choose to purchase:

“Base” Product
- **Procures the least cost clean supply**, whether new or existing
- All resources can participate (hydro, wind, solar, nuclear, storage), no restrictions by type or location
- 1 year anchor price lock-in
- State commitment to submit demand bids in future years, e.g. for 10 years

“Premium” Product
- **New** non-emitting resources
- State has option to define a specific technology type
- ~7-12 year anchor price lock-in
- No state commitment to submit demand in future years
- Option for a “contingent” bid. If premium prices are too high, the state can choose to purchase the lower-cost “base” product instead

Base and “Premium” Clean Energy Products
Forward Clean Energy Auction

Supply Offers
- Sellers offer in $/MWh
- Offer prices consider sellers’ expectations of other revenue streams: capacity, ancillary, and energy (including CO₂ price)
- All sellers qualify as “Base”, a subset of new resources can qualify as “Premium”

Auction Clearing
- Co-optimized clearing for all states’ demand
- Conducted immediately prior to the FCM
- Uncleared clean resources have the option for a separate capacity-only offer in FCM

Cost Allocation & Supply Accounting
- States pay for their own cleared demand
- Emissions accounting: States can only take credit for clean energy procured in this auction or outside PPA (no state can claim the clean value of uncleared existing supply)
Pros and Cons of Dynamic Clean Product

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incentives for Clean Resources that Displace the Most CO₂ Emissions</td>
<td>Complexity</td>
</tr>
<tr>
<td>• Clean payments scale in proportion to marginal CO₂ abatement</td>
<td>• Less intuitive and more complex than historical approaches or CO₂ pricing alone</td>
</tr>
<tr>
<td>No Negative Offer Prices</td>
<td>• New product and market pose implementation costs and risks</td>
</tr>
<tr>
<td>• Unlike many types of clean energy incentives and PPAs, there are no incentives for clean energy to offer negative into the energy market</td>
<td>Lack of Competition between Premium and Base Resources</td>
</tr>
<tr>
<td>Economic Efficiency</td>
<td>• Higher-cost premium new resources might get built while lower-cost base resource opportunities are forgone/retire</td>
</tr>
<tr>
<td>• Incentives similar to the efficient outcomes from a CO₂ price (at least for covered resources)</td>
<td>• The more premium categories are introduced, the less competition (and higher societal costs) could be incurred</td>
</tr>
<tr>
<td>Suppliers Bear Most Fundamentals-Based Investment Risk</td>
<td>Losing Some Efficiencies Compared to Enhanced CO₂ Pricing</td>
</tr>
<tr>
<td>• Locational energy price risk, fleet mix, technology change, fuel price, and load growth risks mostly borne by suppliers</td>
<td>• May forgo lower-cost CO₂ avoidance options for non-covered resources (e.g. energy efficiency, some types of DR)</td>
</tr>
<tr>
<td>Customers Take on Most Regulatory Risks</td>
<td>• No incentives for fossil plants to avoid CO₂ emissions</td>
</tr>
<tr>
<td>• Risk of policy certainty mostly borne by customers (via price and demand bid lock-ins)</td>
<td>• Over- and under-performance risk also borne by customers</td>
</tr>
<tr>
<td>Storage Can Participate</td>
<td>Storage Can Participate</td>
</tr>
<tr>
<td>• Storage has opportunities to participate if charge/discharge cycle displaces CO₂ emissions</td>
<td>Storage Can Participate</td>
</tr>
</tbody>
</table>
Further Considerations

We hope to continue working with a variety of stakeholders to refine and improve this design proposal.

Further considerations and design refinements include:

- Robustness and longevity of demand
- Transmission upgrade cost representation in offers or market clearing
- Lock-in term for premium resources and demand bids
- Method for determining marginal CO$_2$ emissions and auction parameters
- Interactions with energy and capacity markets
- Interactions with RECs and clean energy contracts (existing and future)
- Delivery obligations and reconfiguration auctions
- Qualification standards and quantities
Components of the Dynamic Clean Energy Market

<table>
<thead>
<tr>
<th>Design Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Pricing</td>
</tr>
<tr>
<td>• This coalition continues to recommend enhanced CO₂ pricing as a means to efficiently contribute to achieving decarbonization goals, although it is not the subject of this proposal</td>
</tr>
<tr>
<td>• The dynamic clean energy market will work well in concert with enhanced CO₂ pricing, but can also be pursued on a stand-alone basis</td>
</tr>
<tr>
<td>Dynamic Clean Energy Market</td>
</tr>
<tr>
<td>Product Definition:</td>
</tr>
<tr>
<td>• Clean attribute only (not bundled with energy)</td>
</tr>
<tr>
<td>• Anchor price determined in the forward auction, but realized payments scaled in proportion to marginal CO₂ emissions rate at the time and place of delivery (replicates the incentives from a CO₂ price)</td>
</tr>
<tr>
<td>Supply and Demand:</td>
</tr>
<tr>
<td>• “Base” product that includes all qualified clean resources (new and existing), 1-year price lock-in</td>
</tr>
<tr>
<td>• Base demand quantity should not decrease over time to provide regulatory certainty (perhaps for 10 years)</td>
</tr>
<tr>
<td>• States have the option to specify “premium” products (new resources or specific types of new resources), defined over a longer price lock-in period such as ~7-12 years – shorter than typical PPA commitments</td>
</tr>
<tr>
<td>• States or their designated entities, such as utilities, determine the quantity and price of demand bids</td>
</tr>
<tr>
<td>• States can submit “contingent” demand bids for premium products. If the state’s bid for a newer higher-cost premium product does not clear, then the MWh of demand can revert to buying the cheapest “base” clean energy that is available</td>
</tr>
<tr>
<td>Procurement Auction:</td>
</tr>
<tr>
<td>• Forward clean energy auction conducted immediately prior to the FCM</td>
</tr>
<tr>
<td>• Transmission development costs can be incorporated into offers or auction clearing</td>
</tr>
</tbody>
</table>
Base and “Premium” Clean Energy Products

<table>
<thead>
<tr>
<th></th>
<th>Base Product</th>
<th>Premium Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualified Resources</td>
<td>• All non-emitting resources</td>
<td>• New resources</td>
</tr>
<tr>
<td></td>
<td>• New and existing</td>
<td>• States can determine a specific technology type if desired</td>
</tr>
<tr>
<td></td>
<td>• Storage is qualified (must pay the clean price when charging, earns clean price when discharging)</td>
<td></td>
</tr>
<tr>
<td>Price Lock-in</td>
<td>• 1 year</td>
<td>• Premium products have a longer lock-in period (e.g. ~7-12 years) for cleared resources</td>
</tr>
<tr>
<td>Demand Bid Longevity</td>
<td>• Demand would increase, not decrease, over ~10 years</td>
<td>• Demand may exist for only 1 year and does not need to be resubmitted the following year (but any cleared resources have a price lock-in for ~7-12 years)</td>
</tr>
<tr>
<td></td>
<td>• Limits placed on the size of demand reductions in future years</td>
<td></td>
</tr>
<tr>
<td>Entity Submitting Demand Bids</td>
<td>• State or designated entity (e.g. utility)</td>
<td>• State or designated entity (e.g. utility)</td>
</tr>
<tr>
<td>Price and Quantity</td>
<td>• Price-quantity pairs or sloped curve defined by state</td>
<td>• Price-quantity pairs or sloped curve defined by state</td>
</tr>
<tr>
<td></td>
<td>• ISO-NE to work with each state to determine what input parameters and analytical support is desired each year (e.g. estimate of clean Net CONE or needed quantities)</td>
<td>• ISO-NE to work with each state to determine what input parameters and analytical support is desired each year (e.g. estimate of premium product Net CONE)</td>
</tr>
<tr>
<td>“Contingent” Demand Bids</td>
<td>• n/a</td>
<td>• States have the option to designate bids as “contingent”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Contingent demand bids will procure “premium” new clean resources as long as the premium resources are available at or below the bid price. If not enough premium supply clears, then the uncleared quantity will be procured from the lower-price “base” product</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If reverting to demand for the “base” product, the price lock-in period will revert to 1 year and the demand bid can revert to a lower price</td>
</tr>
</tbody>
</table>

ISO-NE to work with each state to determine what input parameters and analytical support is desired each year (e.g. estimate of clean Net CONE or needed quantities).
Product Definition
Example: Dynamic Clean Energy Payments

Concept: Simulate operational and investment incentives for clean energy that mimics the incentives from a CO₂ price

- Clean energy payment is additive to energy payments (not a bundled product)
- Product definition assumes a pre-defined Reference Emissions Rate (e.g. 1,100 lbs/MWh), based on the average marginal emissions rate in the last delivery year (across all delivered clean MWh)
- Realized payments scale dynamically in proportion to marginal emissions displacement at the time and place of delivery (i.e. proportional to the CO₂ component of LMP)
- Sellers displacing more CO₂ earn proportionally higher payments per MWh for the clean product (and in the energy market with CO₂ price), sellers displacing less CO₂ earn less
- Clean energy buyers take on the risk of over- and under-performance in aggregate

Example: Clean Energy Incentives

<table>
<thead>
<tr>
<th>Market and Product Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Emissions Rate</td>
</tr>
<tr>
<td>CO₂ Price in Energy Market</td>
</tr>
<tr>
<td>Clean Energy Anchor Price</td>
</tr>
<tr>
<td>Simple Average Energy Price</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Realized Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind</td>
</tr>
<tr>
<td>Base Energy Payments ($/MWh)</td>
</tr>
<tr>
<td>CO₂ Component of LMP ($/MWh)</td>
</tr>
<tr>
<td>Clean Energy Payments ($/MWh)</td>
</tr>
<tr>
<td>Total ($/MWh)</td>
</tr>
<tr>
<td>Avoided Emissions Rate (lbs/MWh)</td>
</tr>
</tbody>
</table>

Marginal Incentives in a Typical Day

Higher Clean Payments in Hours with Higher-Emitting Resources on the Margin Simulates Incentives from a CO₂ Price

Energy Price Created by Enhanced CO₂ Pricing

Clean Payment CO₂ Component of LMP Base Energy Price

Negative Price Hours Driven by PTC-Based Offers

No Clean Payments in Hours with Zero Marginal Emissions
Dr. Kathleen Spees is a Principal at The Brattle Group with expertise in designing and analyzing wholesale electric markets and carbon policies. Dr. Spees has worked with market operators, transmission system operators, and regulators in more than a dozen jurisdictions globally to improve their market designs for capacity investments, scarcity and surplus event pricing, ancillary services, wind integration, and market seams. She has worked with U.S. and international regulators to design and evaluate policy alternatives for achieving resource adequacy, storage integration, carbon reduction, and other policy goals. For private clients, Dr. Spees provides strategic guidance, expert testimony, and analytical support in the context of regulatory proceedings, business decisions, investment due diligence, and litigation. Her work spans matters of carbon policy, environmental regulations, demand response, virtual trading, transmission rights, ancillary services, plant retirements, merchant transmission, renewables integration, hedging, and storage.

Kathleen earned a B.S. in Mechanical Engineering and Physics from Iowa State University. She earned an M.S. in Electrical and Computer Engineering and a Ph.D. in Engineering and Public Policy from Carnegie Mellon University.

The views expressed in this presentation are strictly those of the presenter and do not necessarily state or reflect the views of The Brattle Group.
Biography and Contact Information

JUDY W CHANG
Principal, Director | Cambridge
Judy.Chang@brattle.com
617.864.7900 office
617.234.5630 direct

Ms. Judy Chang is an energy economist and policy expert with a background in electrical engineering and 20 years of experience in advising energy companies and project developers with regulatory and financial issues. Ms. Chang has submitted expert testimonies to the U.S. Federal Energy Regulatory Commission, U.S. state and Canadian provincial regulatory authorities on topics related to transmission access, power market designs and associated contract issues. She also has authored numerous reports and articles detailing the economic issues associated with system planning, including comparing the costs and benefits of transmission. In addition, she assists clients in comprehensive organizational strategic planning, asset valuation, finance, and regulatory policies.

Ms. Chang has presented at a variety of industry conferences and has advised international and multilateral agencies on the valuation of renewable energy investments. She holds a BSc. in Electrical Engineering from University of California, Davis, and Masters in Public Policy from Harvard Kennedy School, is a member of the Board of Directors of The Brattle Group, and the founding Director of New England Women in Energy and the Environment.

The views expressed in this presentation are strictly those of the presenter and do not necessarily state or reflect the views of The Brattle Group.
About The Brattle Group

The Brattle Group provides consulting and expert testimony in economics, finance, and regulation to corporations, law firms, and governmental agencies worldwide.

We combine in-depth industry experience and rigorous analyses to help clients answer complex economic and financial questions in litigation and regulation, develop strategies for changing markets, and make critical business decisions.

Our services to the electric power industry include:

- Climate Change Policy and Planning
- Cost of Capital
- Demand Forecasting Methodology
- Demand Response and Energy Efficiency
- Electricity Market Modeling
- Energy Asset Valuation
- Energy Contract Litigation
- Environmental Compliance
- Fuel and Power Procurement
- Incentive Regulation
- Rate Design and Cost Allocation
- Regulatory Strategy and Litigation Support
- Renewables
- Resource Planning
- Retail Access and Restructuring
- Risk Management
- Market-Based Rates
- Market Design and Competitive Analysis
- Mergers and Acquisitions
- Transmission