

BPS Reliability Perspectives for 2050

Jim Robb, President and Chief Executive Officer New England Power Pool June 24, 2020

Mission: To assure the effective and efficient reduction of risks to the reliability and security of the North American bulk power system

- Develop and enforce reliability standards for users, owners, and operators of the bulk power system
- Assess current and future reliability
- Analyze system events and recommend improved practices
- Encourage active participation by all stakeholders
- Facilitate information sharing on security matters
- Accountable to FERC and Canadian government entities

NEPOOL PARTICIPANTS COMMITTEE JUN 23-24, 2020 MEETING, AGENDA ITEM #7

Electric Reliability is Complicated

Grid 1.0 Isolated Systems

Late 1800s - 1940s

- Urban area focus
- Largely selfcontained utilities

NEPOOL PARTICIPANTS COMMITTEE JUN 23-24, 2020 MEETING, AGENDA ITEM #7

Electric Reliability is Complicated

Grid 1.0 Isolated Systems

Late 1800s - 1940s

- Urban area focus
- Largely selfcontained utilities

Grid 2.0 Interconnected Systems

Post World War II

- Large, central station generation
- Long lines to support interconnected flows/ resource sharing
- Instantaneous load/resource balancing
- Significant coordination needs (incidents at speed of light)

NEPOOL PARTICIPANTS COMMITTEE JUN 23-24, 2020 MEETING, AGENDA ITEM #7

And Getting More So ...

Grid 1.0 Isolated Systems

Late 1800s - 1940s

- Urban area focus
- Largely selfcontained utilities

Grid 2.0 Interconnected Systems

Post World War II

- Large central station generation
- Long lines to support interconnected flows/ resource sharing
- Instantaneous load/resource balancing
- Significant coordination needs (incidents at speed of light)

Grid 3.0 Integrated Systems

Now - Future

- More load variability
- Shift in fuel mix
 - Just in time gas
 - Variable wind /solar
 - Solid fuel retirement
- Expansion of digital controls/ "behind meter devices"
- Future:
 - Battery deployment
 - Deep electrification

In 30 years, technology issues can be assumed away

- Battery storage could be economical **and** scaleable
 - Grid scale
 - Distributed/end use
- Off shore wind could be a major generation source in New England
- Small/modular nuclear reactors could be deployable
- Hydrogen and fuel cells?

That said, a reliable electric system will have a number of "physics-based" characteristics

- Maintain frequency and voltage within narrow parameters
- Adequate flexibility to follow loads and minimize system disturbances
- Adequate capacity and *adequate fuel* to serve load

Key Technology Bets – Next 30 years

Smart Inverters

- As we replace MWs from conventional generation, we also need to replace the essential reliability services needed to maintain system reliability
- Inverters and new electronic controllers can:
 - Mimic physical inertial properties
 - Provide near instantaneous response to support grid stability
 - Optimize and manage charging cycles on batteries based on grid needs
 - Work in aggregate to achieve the same objectives as conventional generation
- But ...
 - They are not "plug and play"
 - Much more difficult to model
 - Less reliance on physics, and more reliance on software code
 - Need performance incentives/rules to support reliable behavior

INEPOOL PARTICIPANTS COMMITTEE JUN 23-24, 2020 MEETING, AGENDA ITEM #7 Until Then — Gas Remains a Critical Fuel

- Easy to modify steam plants to burn gas
- Gas prices often favorable to bunker fuel
- Utilities developed switching capabilities
- Gas and electric customers benefit

- Gas emissions substantially lower than fuel oil
- Combined cycle technology substantially reduced heat rates
- "Dual fuel" capability eliminated in many jurisdictions

- Public policy focus on clean resources, especially solar
- Key dispatchable and flexible resource to balance variable generation
- Substantial changes to BPS power plant operations profiles due to "duck curve" and ramp rate impact
- Declining volumes but substantial peak needs result in an economic/pricing problem and create a key vulnerability

Transitional Reliability and Energy Policy: Bridging the Gap on an Evolving System

Key Issues

- Timing of technology development and deployment, especially batteries
- Pace of "deep" electrification
- Gas ratemaking/ regulatory treatment

Getting to the "End State"

- Substantial investment in technology (especially batteries) and transmission
- New planning and operating tools
 - Much more dynamic and stochastic opportunity for AI?
 - Focus on fuel and energy adequacy, not just capacity/resource adequacy
 - Less centralized resource planning; more focus on enabling resource access

• Improved situation awareness and visibility

- Real underlying loads
- Real generation capability

• Integrated cyber defenses

- "Design in" vs. "bolt on"
- Understanding and securing new attack vectors and attack surfaces across a more distributed system

Questions and Answers

