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sector, both actual and as % of workforce
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{'} Total Jobs in Oil, Gas, Coal, Pipelines
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Emissions Sources by Economic Sector, US & New England
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Timeline of Key California Policies for GHG Reductions
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/{'} Challenges with Integrating Intermittent
ENERGY FUTURES Renewables in California
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Over the course of a year large-scale dependence on both wind and solar will
result in significant periods requiring very large-scale back-up options
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Seasonal Variation in Solar & Wind in CA, 2016
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/{'} Impacts of Drought (and Climate Change) on
ENERGY FUTURES Hydro Generation
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4 ...between 2007-2009, a period of significant drought, hydro generation fell to about 13

percent of California’s total generation, down from a peak of 18 percent, with monthly hydro
production falling from 5,000 MWh/month to less than 1,000. In the most recent and more
k severe drought, hydro generation was under seven percent of total generation.

/
California Study

Source: Pacific Institute, 2017




Challenges with Integrating Intermittent Renewables:
ERERCR RS Electricity Storage Capacity by Region, 2017
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Identified Emissions Reduction Potential of Sector-
Specific Pathways for Meeting CA’s 2030 Targets
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US Subsurface Sequestration Potential
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Biogas/Renewable Gas for

Decarbonlzmg Agrlculture Sector

RNG Generation Potential in California (Mcf CH4/year)

&
_

Source: EFl Analysis
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Utilizing agricultural residues and manure as biogas feedstocks for RNG could provide
up to 46.6 Bcf/year of carbon-neutral gas by 2030...Biogas capture also could provide
emissions reductions and economic benefits to the Agriculture sector ....Diverting
methane into a useable product in the form of RNG can have a significant net impact on

CO,e levels—potentially reducing the Agriculture sector’s emissions 13 percent by 2030.

California Study




Mountain Region, 9.5

% Two Largest Generation Sources
69.3% (Coal, 40.8, Gas 28.5)

% Non-Hydro Renewables
12.6% (Wind, 7.2, Solar 4.0)

W. North Central Region, 9.8

% Two Largest Generation Sources
72.6% (Coal, 52.6, Wind, 20)

% Non-Hydro Renewables
22.1% (Wind, 20, Solar, 0)

Pacific Contiguous, 13.8

% Two Largest Generation Sources
69.8% (Hydro, 38.1, N. Gas, 31.7)
% Non-Hydro Renewables
20.2% (Wind, 7.4, Solar, 7.3)

Avg. retail elect’rlocitay price,
o

cents/kwh HI

Data are for 2018

Source: EIA website, accessed
June 2019 K

Pacific Non-Contiguous, 25.5

% Two Largest Generation Sources

65.2% (Pet. Liquids, 45.6,
N. Gas, 19.6)

% Non-Hydro Renewables
9.6% (Wind, 4.2, Solar, 1.3)

> ¢
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E. North Central Region, 10.1

% Two Largest Generation Sources
70.6% (Coal, 44.8, Nuclear, 25.8)

% Non-Hydro Renewables
5.5% (Wind, 4.5, Solar, 0.1)

New England Region, 17.5

% Two Largest Generation Sources
77.7% (N. Gas, 48, Nuclear, 29.7)

% Non-Hydro Renewables
11.3% (Wind, 3.5, Solar, 1.5)

Mid-Atlantic Region, 12.6

% Two Largest Generation Sources
76.4% (N. Gas, 39.1, Nuclear, 37.3)

% Non-Hydro Renewables
3.6% (Wind, 1.9, Solar, 0.3)

o Ao FLY

W. South Central Region, 8.4

% Two Largest Generation Sources
72.3% (N. Gas, 49.3, Nuclear, 23)

% Non-Hydro Renewables
15.4% (Wind, 14.1, Solar, 0.5)

E. South Central Region, 9.3

% Two Largest Generation Sources
58.8% (N. Gas, 44.1, Nuclear, 24.7)

% Non-Hydro Renewables
2.0% (Wind, 0, Solar, 0)

South-Atlantic Region, 9.9

% Two Largest Generation Sources
68.9% (N. Gas, 44.1, Nuclear, 24.7)

% Non-Hydro Renewables
4.4% (Wind, 0.3, Solar, 1.7)

New England Electric Grid
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Installed Capacity in New England, 2019 (MW)
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Wind
1,400 MW
4% Solar
3,500 MW
1%
4,343 MW . Natural Gas

14% 15,803 MW
50%
oil
6,600 MW
21%

Sources: ISO-NE Website New England Electric Grid



/{'\ New England Summer Capacity Supply Obligations by

o Fuel, 2019 (MW)
Summer Capacity Supply, 2019 (MW)

_ Steam  Wind Battery, Energy Co-located, PV / Fuel Cell
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(o] | O 917 5 0%
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V=] I =Y | [ 23 21%
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N ¥ Lol [ | 4,343 11%
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Sources: ISO-NE Website

New England Electric Grid



{} Reference Frames for Installed Capacity/ Dispatchable
=y Technologies: 100% Wind & Solar Replacing Oil, Gas & Nuclear
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S Imoralée CappaititYbligalapaliyeE dctpacity Factors™

MW Capacity
Needed to Square
Replace Gas, Miles
Oil & Nuclear Land
Capacity Needed*

15,803 MW Natural Gas  Capacity Factor 67%

6,618 MW Oil Capacity Factor 15%

4,343 MW Nuclear Capacity Factor 93.5% /

| 4051 MW Solar PV apacity Factor 24.5% p | 59,826 » 57

| 2836 MW Wind ** Capacity Factor 35% (onshore)/ | 41,878/ 194

Source: land use for wind solar NREL, 10 MW PV 6.1 acres, 10 MW onshore wind 44.7 acres, 640

acres = sg. mile # Turbines
Capacity factors, solar PV, Gas, nuclear onshore wind: EIA

Capacity factors offshore wind: https://energynumbers.info/uk-offshore-wind-capacity-factors

Needed**

***Assumes no onshore wind, assume 15 MW per installed turbine

112 MW Wind ***

This and previous slide demonstrate the obvious — massive amounts of storage are needed

when dispatchable generation is eliminated and. IGEGEINIEEE L T

Capacity Factor 45% (offshore) p



https://energynumbers.info/uk-offshore-wind-capacity-factors
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Demand Response, Capacity by RTO/ISO, 2017-2018

...we need an even greater focus on demand response

750 MW of DR assets

were enrolled in the market in the
summer of 2017

MISO: 6,014 MW cleared in
the 2017-18 resource auction
but is generally retail and not
included in wholesale power

markets NYISO: 1,237 MW of enrolled
capacity as of July 2017 or 4.2% of

NYISO’s 2017 summer peak

CAISO: 1,023 MW of total
availability reliability DR in 2017 was
integrated into the CAISO market PJM: 8,120 MW of demand response
was committed for 2017/2018, 4.2% of

total committed capacity for that year

SPP: NA

ERCOT: 2,170 MW of combined
RRS and ERS programs as of end of 2017

file:///C:/Users/Melanie%20Kenderline/Downloads/266 2018 Utility Demand Response Market Snapshot.pdf

New England

Sources: Navigant, 2018


file:///C:/Users/Melanie%20Kenderline/Downloads/266___2018_Utility_Demand_Response_Market_Snapshot.pdf

{'} Generation Technologies, LCOE for Plants

ENERCUEUIEE Entering Service in 2022
d cC —S$48.1 Advanced CCw/ cCS —$74.9 Coal with 30% CCS— $130.1

Advanced Nuclear — S92.6 Advance

Advanced CT —>$85.1

Ll
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Onshore Wind —>$59 1 Solar PV — $63.2 Offshore Wind—> $138.0
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Solar Thermal -5165.1

LCOE Source: EIA US Trends/Issues
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NGCC LR

l36-$44
Solar PV, thin film

Gas peaker $98-$181

Solar thermal w/storage | 5142-$214|

Unsubsidized Levelized Cost of Storage

Utility-Scale Lithium
(PV +
Storage)

Source: Lazard, Levelized Cost of
Energy Analysis, Version 4.0, 2018 FIOW (V)

Flow (Zn)
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Evolving Requirements for System Operations

* The widespread integration of VERs at both utility scale and distributed across all consumer segments significantly expands
the time dimensions in which grid operators must function and complicates operations.

 Dispatch effectiveness will require the integration of automated grid management with continuing human oversight as well
as an increase in the granularity, speed, and sophistication of operator analytics.

System Reliability Depends on Managing Multiple Event Speeds

Frequency . .
One AC ; Service Restoration
Regulation
Cycle . (from Outages)
*Variabl
Non-Market ariablepnergy Day-Ahead :
Protective Relay Resofirce  Hour-Ahead Scheduli Capacity Planning for
: 3 . chedulin
Market Operations Inertial Reviagans Dispatch & Markets Carbon Goals
Response l Demand - ° T&D s
@ Hybrid | Planning

1 W | | [ | | | I

10°% 103 10° 103 108 22 10° seconds

US Trends/Issues

Source: von Meier, 2014 millisecond second minute hour day year decade




}/ Electricity and Lifeline Network Interdependencies
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Shipping

Fuels. Lubdsg Finance

Fuel Transport, Shipping

Transportation

Power for Pumping Stations,
Storage, Control Systems

Fuel for Generators,
Lubricants

Shipping

Power for Pump/Lift
Stations, Control Systems

SCADA Communications

Water for
pduction, Cooling

iter for Cooling,
issions Reduction

Fuel for Generators
SCADA Communications
SCADA Communications

Fuels. Lubricants

Water for Cooling,

Communications Emissions Natural Gas

Reduction

JIT SCADA Communications

Source: Modified from the SCADA Communications
Second Installment of the
Quadrennial Energy Review,
Transforming the Nation’s

Electricity Systems, 2017
vy US Trends/Issues
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Two Way Electricity Flows and Grid Security
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Source: Annual Energy Conservation Progress Report, 2010 Un dergroun d

(Volumé One): Managing a Complex Energy ’ Distributi Control f
System. Toronto, ON, modified for presentation SUDUtOY Center Energy Security
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Two Way Electricity Flows and Grid Security, contd.

Traditional utility data acquisition and monitoring systems are ill-equipped to gain real-time visibility of DERs
because these systems typically do not extend beyond substations, are unable to acquire measurements on DER
performance, and were not designed to handle real-time processing of large volumes of data. Thus, improved
sensing, monitoring, and modeling are vital.”

- DOE Office of Electricity Delivery and Energy Reliability-

“Assuring that we have reliable, accessible, sustainable, and affordable electric power is a national security
imperative. Our increased reliance on electric power in every sector of our lives, including communications,
commerce, transportation, health and emergency services, in addition to homeland and national defense, means

that large-scale disruptions of electrical power will have immediate costs to our economy and can place our security
at risk.

Whether it is the ability of first responders to answer the call to emergencies here in the United States, or the
readiness and capability of our military service members to operate effectively in the U.S. or deployed in theater, these
missions are directly linked to assured domestic electric power.”

—Center for Naval Analyses-




{} Metals Demand for Low Carbon Technologies
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Wind (10)

Aluminum, Chromium, Copper, CCS (8)
Indium, Iron (cast), lIron
(magnet), Lead, Manganese,
Molybdenum, Neodymium
(proxy for rare earths), Nickel,
Steel (engineering)

Nuclear Power (8) ] Electric Vehicles (6)
Chromium, Cobalt, Copper, ICopcentratmg Solar (?‘I) Cobalt, Copper, Manganese,
Indium, Lead, Molybdenum, Aluminum, Iron (cast), Silver Neodymium (proxy for rare

Light Emitting Diodes (11)
Aluminum, Chromium, Copper,
Indium,

Iron (cast), Lead, Manganese,
Molybdenum, Nickel, Silver,

Aluminum, Chromium, Cobalt,
Copper, Indium, Manganese,
Molybdenum, Nickel

Nickel, Silver earths), Nickel, Silver

Electric Motors (3)

Energy Storage Aluminum, Copper, Iron Solar PV (6)
Aluminum, Cobalt, Lithium, Iron (magnet) Aluminum, Copper, Indium,
(cast), Nickel Nickel,

Cill e 2 e

In 2017, UNEP calculated that low carbon technologies will need over 600 million metric tonnes more metal
resources in a 2° C scenario compared to a 6° C scenario where fossil fuel use continues on its current path.
(It also concluded that the 2° scenario would save more than 200 million cubic meters of water ...)




{'} Lithium, Cobalt, Nickel Production/Reserves
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Lithium Production/Reserves (metric tons) Reserves®

Mine production

Tesla’s global
supply manager for
- battery metals, told
Meeting the Clean i : . ,000, a closed-door

Energy Ministerial’s , Washington
target of 30 million ; , , conference of
electric vehicle _ | : : miners, regulators
sales by 2030 = o ‘ — : T aenes and lawmakers that
would require 314 s : oz == - the automaker sees

kt/yr. of cobalt, . ; 000 PTTY ] a shortage of key

almost three times Madagascar : . 140,000 EV minerals coming
h 2017 I I f rl':.'.‘:rﬁgcﬁlew Guinea g%?g %ggg ggggg H
the evel for e e 3.310 3200 280008 in the near
all uses. At those Sooth Africa >300 5200 224.000 future...Tesla will
Other countries __ 7650 __¥.000 __ 640,000
rates, reserves World total (rounded) 6.900,000 continue to focus

would last 23 years. B metric ton Minesroduction. Reserves® more on nickel,

- = . I part of a plan by
Carbonbrief.org . 2.800.,000 Chief Executive

Colom bia . 440,000
Cuba 52,800 5,500,000
Fintand o M Elon Musk to use

e o LM =
ndonesia 345,000 5650, H
e R - less cobalt in
Mew Caledonial® 215,000 210,000 —_ b h d
FPhilippines 366,000 340,000 4. 800,000
Russia 214,000 210,000 F..600,000 attery cat o es'
South Africa 48,400 4. 000 3. 700,000
Source. USGS 2019 Other countries 146,000 180.000 6,500,000 EIeCtrek’ May' 2019
. ’

VWorld total (rounded) 2,150,000 2,300,000 859,000,000
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Gdex reflects Departmeh

of Energy (DOE) national
laboratories and Energy
Innovation Hubs, the DOE-
funded Energy Frontier
Research Centers, the
National Network for
Manufacturing Innovation
Centers, NASA
laboratories and facilities,
the top 100 research
universities, and the
major Federally Funded
Research and
Development Centers
(FFRDCs). Thereis a

X .
significant clustering of ’ ”‘T‘F*ig:;.ié_:“’lfw\ / ~J B Sparse

/
\innovation capabilitis/ \:\iﬁq -
)
Source: Advancing the Landscape of Clean Ene%} US Trends/lssues

Innovation, 2019, EFI, IHS Markit )
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EFI Breakthrough Clean Energy Technologies

* Federal and private clean energy innovation are complementary

* Key platform technologies hold great potential to unlock significant
clean energy innovation

» A four-step process is used to identify breakthrough technologies
that have the potential to aid government, industry and thought
leaders in efforts to transform the energy sector

0

Analyze key drivers of clean
energy technology
breakthroughs

Digitalization, big data & smart
systems

The difficult to decarbonize
sectors

Integration of platform
technologies

Systems and supply chains

E]

Develop selection criteria
for breakthrough
technologies

Technical merit
Market viability
Compatibility

Consumer value

Identify the universe of
emerging energy
technologies that have
critical features across
various timescales

Source: Advancing the Landscape of Clean Energy

Innovation, 2019, EFI, IHS Markit

Identify innovation areas
with significant
breakthrough potential

Y V VYV

Critical innovation areas
identified are:

Storage and battery technologies
Advanced nuclear reactors
Technology applications for industry
and buildings as sectors that are
difficult to decarbonize including
hydrogen, advanced manufacturing
technologies; and building
technologies

Systems: electric grid modernization
and smart cities

Deep decarbonization/large-scale
carbon management; carbon
capture, use and storage at scale;
sunlight to fuels; enhanced
biological and oceans sequestration




{") Quadrennial Energy Review Recommendations, 2017:
ENERGY FUTURES How Much Progress Has Been Made?

Increase Financing Options for Grid Modernization \

» Expand DOE’s loan guarantee program and make it more flexible to assist in
deployment of innovative grid technologies and systems.

Increase technology demonstrations and utility/investor confidence.

» Significantly expand existing programs to demonstrate the integration and
optimization of distribution system technologies.

Build Capacity at the Federal, State, and Local Levels.

» Provide funding assistance to enhance capabilities in state public utility commissions
and improve access to training and expertise for small and municipal utilities.

» Create a center for Advanced Electric Power System Economics to provide social
science advice and economic analysis on an increasingly transactive and dynamic
21st century electricity system.

Inform Electricity System Governance in a Rapidly Changing Environment.

» Establish a Federal Advisory Committee on alignment of responsibilities for rates and

resource adequacy. Prends/Issues 20






