

NEPOOL Participants Committee Summer Meeting

What Pathways Have Others Chosen Or Are Considering

Frank A. Felder

ffelder@ejb.rutgers.edu

National Science Foundation Award: CMMI 1825225

June 24, 2020 Updated

Review and analysis of different policy and design choices of the electric power sector (EPS) outside of New England to explore the range of possibilities, their interactions, and implications to inform New England's Transition to the Future Grid project.

Context for Presentation

- 1. Deep decarbonization of EPS by 2050 and use of electricity for transportation and heating
- 2. Large geographical region with multiple jurisdictions encompassing multiple generation and transmission companies
- 3. Focus is on the bulk power system design given the trends in the industry

Deep Decarbonization: Summary of Some U.S. & International Practices

Public Engagement re: Transmission Siting	Planning	Markets & System Flexibility	Diverse Resources	System Operations
TX: 18.5 GW of wind integration with new transmission	TX: Centralized planning and Competitive Renewable Energy Zones with risk	TX: Demand response for frequency regulation	Ireland: regional expansion and major interconnection expansion	Australia: Market forecast model integrates forecasts from variety of sources
Germany: Priority to extra-HV transmission projects & shorter planning process	borne by ratepayers Australia: National rather than	Australia: 5 min. dispatch and negative prices Denmark: CHP	U.S. West: energy imbalance market and reserve sharing	Denmark: uses multiple forecasts Spain: Wind farms
CA: Established renewable energy generation and transmission siting steering committee	regional development based upon market-based cost differentials	required to participate in the spot power market Germany: substantial incentives for energy storage		 > 10 MW and solar > 2 MW provide reactive power & most wind farms have fault-ride through capability

Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience, Summary for Policymakers, Cochran et al, April 2012, <u>https://www.nrel.gov/docs/fy12osti/53730.pdf</u>

Deep Decarbonization: Some U.S. & International Practices

Public Engagement re: Transmission Siting	<u>Planning</u>	<u>Markets & System</u> <u>Flexibility</u>	Diverse Resources	System Operations			
 TX: 18.5 GW of wind integration with new transmission Germany: Priority to extra-HV transmission projects & shortens planning process 	Re Zo bc • Multiple rat • No singl	ntralized TX: Demand Ireland: regional Practices span planning and operations Multiple practices are used No single set of practices are t common among regions					
CA: Established renewable energy generation and transmission siting steering committee	re de based upon market-based cost differentials	spot power market Germany: substantial incentives for energy storage		Spain: Wind farms > 10 MW and solar > 2 MW provide reactive power & most wind farms have fault-ride through capability			

Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience, Summary for Policymakers, Cochran et al, April 2012, <u>https://www.nrel.gov/docs/fy12osti/53730.pdf</u>

Edward J. Bloustein School of Planning and Public Policy

Analysis Set-up: Problems and Timeline

Political Economy Problem	Cycles/Sec	5 minutes	Day-ahead	Econo Coali Politi Equit	Years rbonization, omic develo tion building cal ideology, y, Multiple lictions (Yea	pment g,	
Economic/ Regulatory Problem	Economic efficiency, Incentive alignment, Strategic behavior/rent seeking: asymmetric information, market power, externalities, and public goods (Minutes to Years)						
Engineering Problem	System Control	Economic Dispatch	<u>Optii</u> Unit Commitment	<u>mization</u> Operational Planning	Expansior Planning	1	
-	Cycles/Sec	5 minutes	Day-ahead	Months	Years ITGERS	Time	

- 1. Each of the three types of problems: political economy, economic/regulatory, and engineering must be addressed
- These three problems may be solved inconsistently or incompletely and compounded by multiple and overlapping jurisdictions
- 3. Unless they are addressed in an integrated and consistent manner, political, economic, and reliability difficulties are likely to occur
- 4. Decisionmakers pursue their own strategic objectives
- 5. Important tradeoffs exist between different approaches

Edward J. Bloustein School of Planning and Public Policy

Analysis Set-up: Decisionmakers

Political Economy Problem	U.S. Context: Federal & State Regulators International: Individual countries, perhaps as part of a larger cross- national union
Economic/	Federal Energy Regulators State Energy Regulators
Regulatory	International and National Environmental Regulators
Problem	Federal & State Environmental Regulators
	State Economic Development Agencies
Engineering	Integrated utilities OR
Problem	Merchant generators, transmission companies, system operator
	Cycles/Sec 5 minutes Day-ahead Months Years Time
	RUTGERS

Edward J. Bloustein School of Planning and Public Policy

ð

Analysis Set-up: Design Variables

Political Economy Problem					Types of reso their product Air emission r Cost-of-servic performance- market orient Regional scale	s regulation ce, -based, ted
Economic/			tent of joint pla			
Regulatory Problem			tent of joint ope	erations by	generation a	ind load
Problem		EX	tent of trading			
Engineering Problem		Optimizatio Cost-based	nd service defini on period I or bid/offer-ba t/pricing mecha	ised		
	Cycles/Sec	5 minutes	Day-ahead	Months	Years	Time
					RUTGE	ERS

Presentation Organization, Part 1: Deep Decarbonization

Political Economy Problem				Decarboni Economic Coalition k Political id Equity, Mu jurisdiction	development building, leology, ultiple
Economic/ Regulatory Problem		Strategic be asymmetric	fficiency, Incentive havior/rent seeki information, ver, externalities,	ng:	ods
Engineering Problem	System Control	Economic Dispatch	<u>Optimia</u> Unit Commitment	Operational	Expansion Planning
_	Cycles/Sec 5	minutes	Day-ahead M	onths Years	s Time

Deep Decarbonization: High-level Considerations

Political and Policy Objectives	Policy Development	Policy Options
Decarbonization & environmental co-benefits	Political negotiation	Ban/restrict fossil fuels
Economic development	Legislative non-integrated resource planning	Clean energy subsidies
within a particular jurisdiction	Integrated resource planning	Feed-in tariffs
		Power Purchase Agreements
Political success		Renewable portfolio standards
		Pricing greenhouse gases

Deep Decarbonization: Examples

Means	Some Examples			
Ban/restrict fossil fuels	Countries in Europe and Asia banning fossil fueled cars; U.S. restrictions on air permits, pipeline developments			
Clean energy subsidies	Many U.S. states both historically and currently; energy efficiency is a major example			
Feed-in tariffs	Many European Countries, e.g., Germany			
Power Purchase Agreements	Ubiquitous			
Renewable portfolio standards	29 U.S. states and DC Multiple countries in Asia			
Pricing greenhouse gases	Europe (economy wide), CA (economy wide), RGGI			

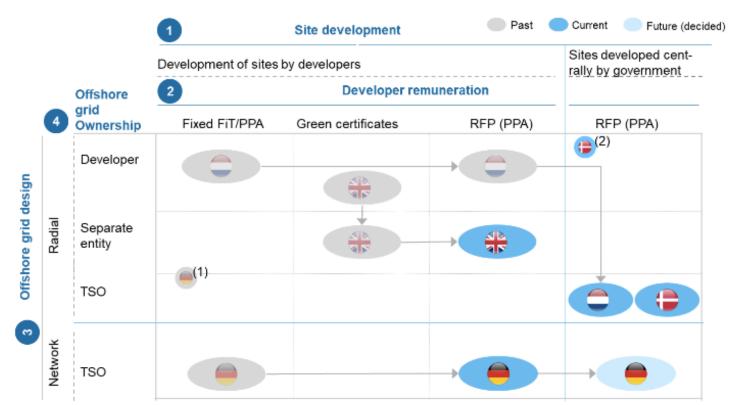
Deep Decarbonization: Policy Supports, 24, 2020 MEETING, AGENDA ITEM #7 Asia

Asia and Pacific	R	egulato	y suppo	rt			Econ	omic su	pport		
Country	Renewable energy law	Targets	Quotas/RPS	Auction schemes	Tradable green certificates	FIT/Feed-in premium	Capital grants and subsidies	Soft loans	Tax relief	Net metering	Carbon pricing
Australia	~	•		∎ ∕	~	•	~				~
Bangladesh		~		~					~		
India		11	11	11	~	~	1	1	~ •	11	~
Indonesia		~		•		•			~		
Japan		•				•	~		~	~	
Korea		~	~		~	1			~		
Lao PDR*1		~							~		
Malaysia	~	~		•		•		~	~		
Mongolia	•	~									
Myanmar									~		
New Zealand		~									~
Pakistan		~				•				0	
Philippines	~	~	0			•			~	~	
Singapore		~					~		~		
Thailand		•		•		•	~		~		
Viet Nam		•						~	~		

Notes: ✔ = national-level policy; ✔ = state/provincial-level policy,

E = todae phasedabed, or closed to new applicants,

① = recently introduced - under review. For further information, refer to IEA/IRENA Policies and Measures Database for Renewable Energy: www.iea.org/policiesandmeasures/renewableenergy.



Deep Decarbonization: Policy Supports, 24, 2020 MEETING, AGENDA ITEM #7 Europe

Europe	R	egulato	ry suppo	ort			Econ	omic su	pport		
Country	Renewable energy law	Targets	Quotas/RPS	Auction schemes	Tradable green certificates	FIT/Feed-in premium	Capital grants and subsidies	Soft loans	Tax relief	Net metering	Carbon pricing
Austria	~	~				~	~		~		
Belgium		~	11		11		11			1	
Denmark	~	~	~	•		~	~	~	~	~	
Estonia		~		0		•	~		~		
Finland	~	~				• ►	~				
France	~	•		0		0	~	~	~		
Germany	•	~		0		•	•	•	~		
Greece	-	~					~		~	~	
Hungary		~		0		•	~				
Ireland		~							~		
Italy	~	~		•		~			~	~	
Netherlands		~		0		•		~	~	~	
Norway		•					~				~
Poland	0	~		• ①			•			0	
Portugal		~									
Slovak Republic	~	~				~	~		~		
Slovenia		~				~	~	~		0	
Spain		~		0							
Sweden		~	~		~		~		~		~
Switzerland		~				~	~				
Turkey	~	~				•					
United Kingdom		~	►	•	►			~	~		~

Offshore Wind: Investment Instruments

1 Some parks in the North and Baltic Sea connected point-to-point such as Alpha Ventus, Riffgat, EnBW Baltic 1/2, Nordergründe 2 Nearshore projects Source: Energinet; TenneT; National Grid; International Energy Agency

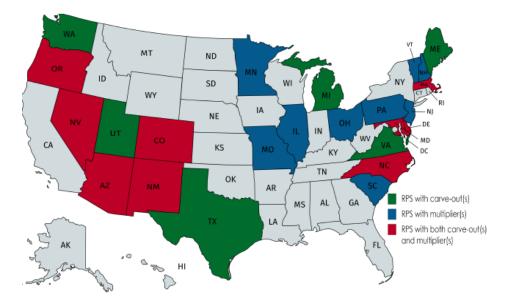
Exhibit 6: Evolution of OSW support models in Europe

NYPA, Offshore Wind A European Perspective, Aug. 2019 https://www.nypa.gov/-/media/nypa/documents/document-library/news/offshore-wind.pdf

Deep Decarbonization: Assessment of 23-24, 2020 MEETING, AGENDA ITEM #7 Policy Options

Means	Economic & Regulatory	Political Economy		
Ban/restrict fossil fuels	Puts infinite price on fossil fuel externalities	Does not generate revenue or visibly contribute to economic development		
Clean energy subsidies Feed-in tariffs	Due to information asymmetry, difficulty to set amount of subsidies Requires technology and project selection process Financial risk borne by ratepayers	Direct subsidies may quickly become too large to be politically supportable Can be tailored to further economic development goals		
Renewable portfolio standards	If market-based, shifts risks to developers Selection of RPS may not be efficient Nascent & fractured markets: opaque & volatile pricing			
Pricing greenhouse gases	Efficient Financial risks borne by developers	Considered less politically viable Economic development disconnect Technically neutral; not know what investments will be made Raises revenue		

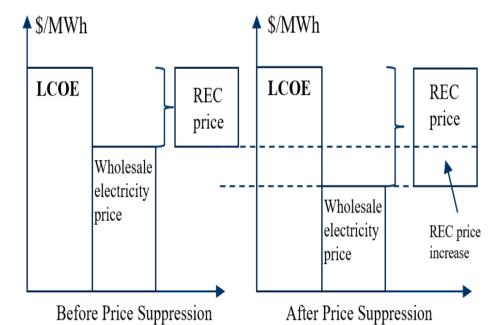
15


Deep Decarbonization: RPS and Generation Investment

Many States have RPS carve-outs and multipliers

Many types of xRECs: RECs, SRECs, ORECs, ZECs

⇒ Partial explanation of these variations is states having different strategic goals


Note: RPS directly provide MWh, not inertia, regulation, ramping, or operating reserves

Deep Decarbonization: Out of JUN 23-24, 2020 MEETING, AGENDA ITEM #7 Wholesale Electricity Market Payments

- Revenue stream of renewable energy generators comes from wholesale and REC markets
- Out of market payments not unique to RPS or nuclear resources
- Cost of RECs/ZECs amortized over all retail kWh
- Out of wholesale market payments suppress wholesale prices
- Multiple market failures

Deep Decarbonization: Generation and 24, 2020 MEETING, AGENDA ITEM #7 Transmission (and distribution)

Three important examples:

- Offshore wind: radial vs. backbone
- Energy storage
- Major regional and subnational interconnections

Figure 4. Locations of U.S. Atlantic Coast offshore wind pipeline activity and Call Areas as of March 2019. Map provided by NREL

Smart Grid Solutions, <u>https://www.renewableenergyworld.com/2018/02/13/unpacking-the-value-stack-the-challenge-facing-the-energy-storage-industry/#gref</u>

Deep Decarbonization: Transmission UN 23-24, 2020 MEETING, AGENDA ITEM #7 Planning Options

Political and Policy Objectives	Policy Development	Policy Options
<u>Federal/Regional Objectives:</u> Reliability	Political negotiation	Integrated generation and transmission planning vs. sequential
Economic efficiency	Planning by transmission owners	generation investment and transmission planning
<u>State Objectives:</u> Integrate renewables Lower electricity rates	Planning by system operator	 Types of transmission planning investments: Public policy Reliability Economic
Shifting costs to another jurisdiction		Addressing uncertainty in transmission planning Cost allocation

Deep Decarbonization Investment: Examples of Three Major Tradeoffs

- 1. Long-term financing methods (e.g., cost-of-service regulation or long-term contracts) may reduce cost of capital but allocate risk to ratepayers
- 2. Wholesale markets shift risks to suppliers and may lower generation costs but may increase the costs of sequential generation and transmission planning
- Commitments to long-term supply arrangements may address political economy objectives but restrict the ability to address operational requirements

BREAK FOR QUESTIONS AND COMMENTS

Presentation Organization, Part 2: Balancing Supply and Demand

Political Economy Problem			Decarbonization, Economic development Coalition building, Political ideology, Equity, Multiple jurisdictions					
Economic/ Regulatory Problem	Economic efficiency, Incentive alignment, Strategic behavior/rent seeking: asymmetric information, market power, externalities, and public goods							
-			<u>Optimi</u>	<u>zation</u>				
Engineering Problem	System Control	Economic Dispatch	Unit Commitment	Operational Planning	Expansion Planning			
-	Cycles/Sec	5 minutes	Day-ahead	Months Years	s Time			

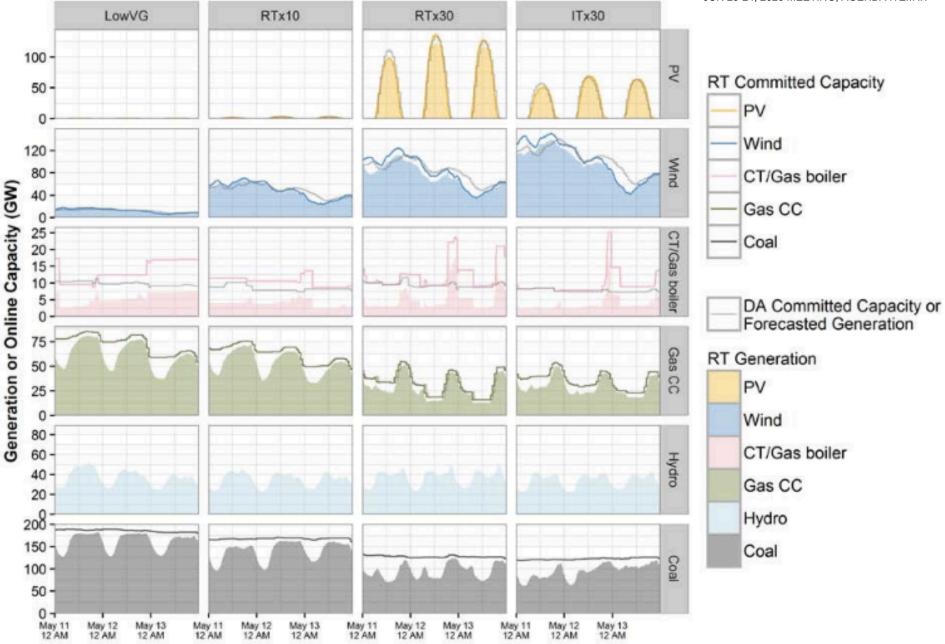
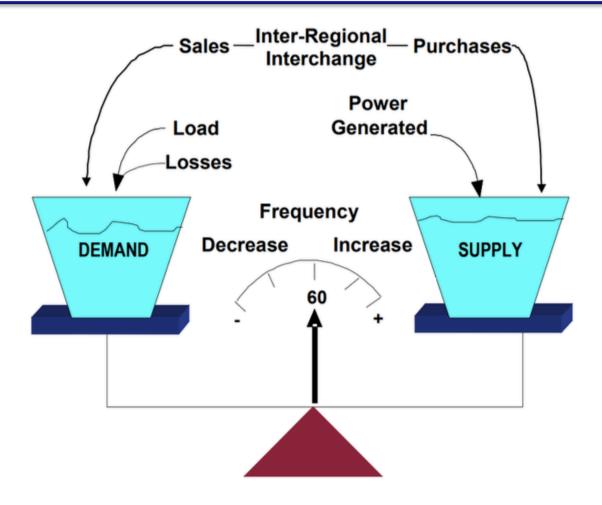

Generation Dispatch with Increasing Variable Energy Resources

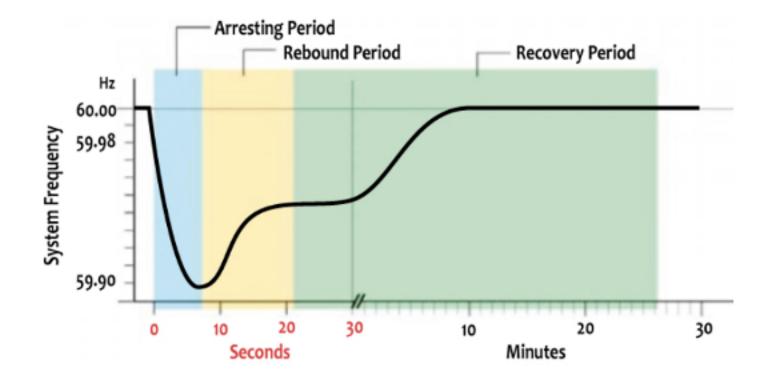
Table ES-1. ERGIS Includes Four Scenarios with Different Levels of Wind, PV, and Transmission Capacity Expansion

Scenario	Wind	PV	Total ^a	Attributes
LowVG	3%	0%	3%	 No new wind or PV generation installations after the year 2012. Minimal transmission expansion.
RTx10 (Regional Transmission and ~10% VG)	12%	0.25 %	12%	 An approximately 10% VG penetration as reflected in state RPS and interconnection queues as of 2012.^b Intra-regional transmission expansion.
RTx30 (Regional Transmission and 30% VG)	20%	10%	30%	 Approximately 30% combined VG, with an emphasis on within-region wind and PV resources. Identical transmission expansion to RTx10.
ITx30 (Inter-regional transmission and 30% VG)	25%	5%	30%	 Approximately 30% combined VG, with an emphasis on the best wind and PV resources in the U.S. EI. Interregional transmission expansion with 6 large high-voltage direct current (HVDC) lines.



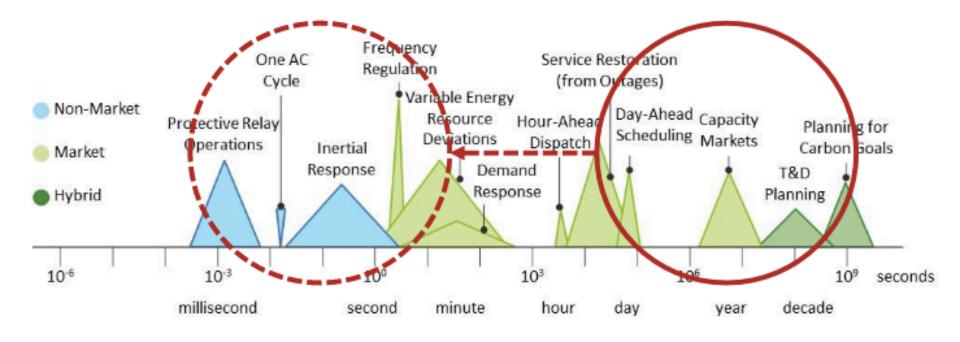
NEPOOL PARTICIPANTS COMMITTEE JUN 23-24, 2020 MEETING, AGENDA ITEM #7

Edward J. Bloustein School of Planning and Public Policy


System Control: Normal Operations

Source: NERC Balancing & Frequency Control, January 2011

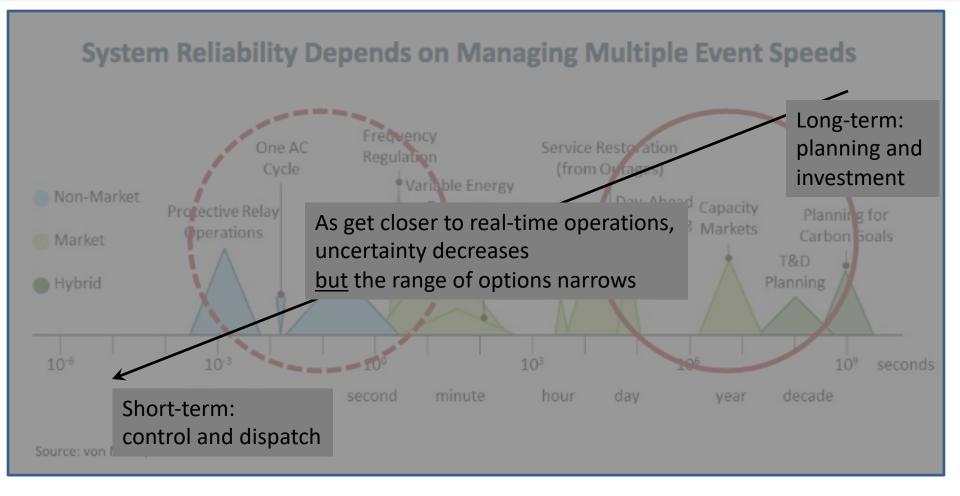
System Control: Contingency



Source: http://www.nerc.com/comm/Other/essntlrlbltysrvcstskfrcDL/ERS%20Abstract%20Report%20Final.pdf

System Control: Occurs Over Entire Timeline

System Reliability Depends on Managing Multiple Event Speeds


Source: von Meier, 2014

http://energyoutlook.naseo.org/Data/Sites/13/media/presentations/Battershell--QER-1.2-Briefin.PDF

NEPOOL PARTICIPANTS COMMITTEE

System Control: Relationship between 23-24, 2020 MEETING, AGENDA ITEM #7 Available Options and Uncertainty

http://energyoutlook.naseo.org/Data/Sites/13/media/presentations/Battershell--QER-1.2-Briefin.PDF

System Control: International Share of 3-24, 2020 MEETING, AGENDA ITEM #7 Variable Generation

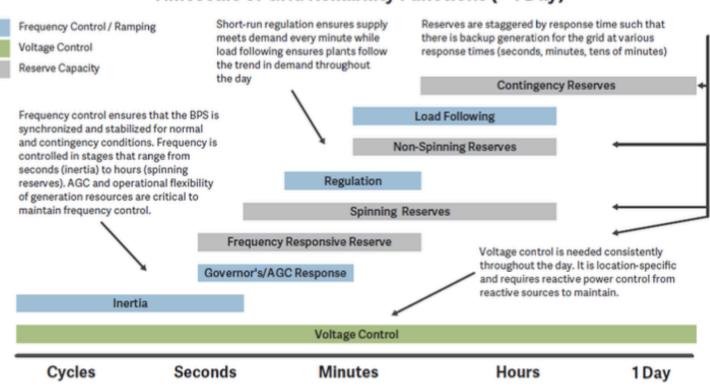
Notes: AT = Austria; AU = Australia; BR = Brazil; CL = Chile; CN = China; DE = Germany; DK = Denmark; ES = Spain; GR = Greece; ID = Indonesia; IE = Ireland; IN = India; IT = Italy; MX = Mexico; NZ = New Zealand; PT = Portugal; SE = Sweden; UK = the United Kingdom; ZA = South Africa. PJM, CAISO and ERCOT are US energy markets.

Source: Adapted from IEA (2016a), Medium-Term Renewable Energy Market Report 2016.

Key point • Each phase can span a wide range of VRE share of generation; there is no single point at which a new phase is entered.

International Energy Agency, 2017, Status of Power System Transformation 2017: System Integration and Local Grids, p. 37, <u>https://webstore.iea.org/download/direct/298</u>

See Kroposki et al, Achieving a 100% Renewable Grid, IEEE Power & Energy Magazine, March/April 2017, http://ipu.msu.edu/wp-content/uploads/2018/01/IEEE-Achieving-a-100-Renewable-Grid-2017.pdf for non-technical discussion of technical issues related to operating a 100% variable energy power system.



Findings: Ancillary Services

- 1. Ancillary service prices are volatile
- 2. Ancillary service costs are currently small total of wholesale costs but their share of costs is increasing
- 3. No consensus exists for the types and definitions of ancillary services
- 4. Ancillary services become more important as the percentage of renewable energy increases
- 5. The types of ancillary services are likely to increase and change with increasing variable energy resources
- 6. Renewable resources can provide many ancillary services
- 7. Some ancillary services are substitutes with other ancillary services
- 8. Co-optimization and opportunity cost pricing become more important with increasing variable energy resources

Balancing Supply and Demand: JUN 23-24, 2020 MEETING, AGENDA ITEM #7 Ancillary Services (U.S. & International)

Timescale of Grid Reliability Functions (< 1 Day)

Notes and Sources:

[1] Adapted from Kirby, Brendan, "Potential New Ancillary Services: Developments of Interest to Generators," August 2014.

[2] NERC, "Special Report: Ancillary Service and Balancing Authority Area Solutions to Integrate Variable Generation," March 2011.

[3] Kirby, Brendan, "Ancillary Services: Technical and Commercial Insights," July 2007.

Source: Analysis Group, Advancing Past "Baseload" to a Flexible Grid, June 2017

From Electricity Ancillary Services Primer, Reishus Consulting, August 2017 http://nescoe.com/wp-content/uploads/2017/11/AnxSvcPrimer_Sep2017.pdf

System Control: U.S. Regulation Prices

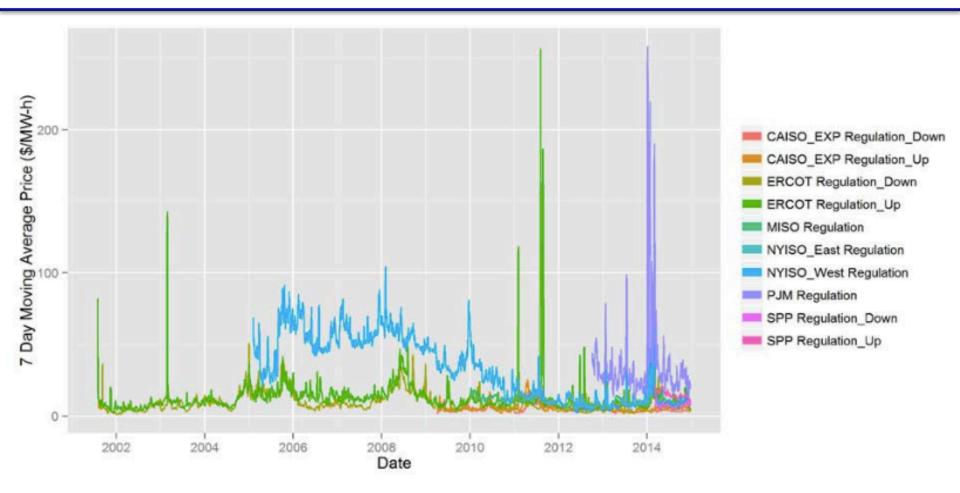
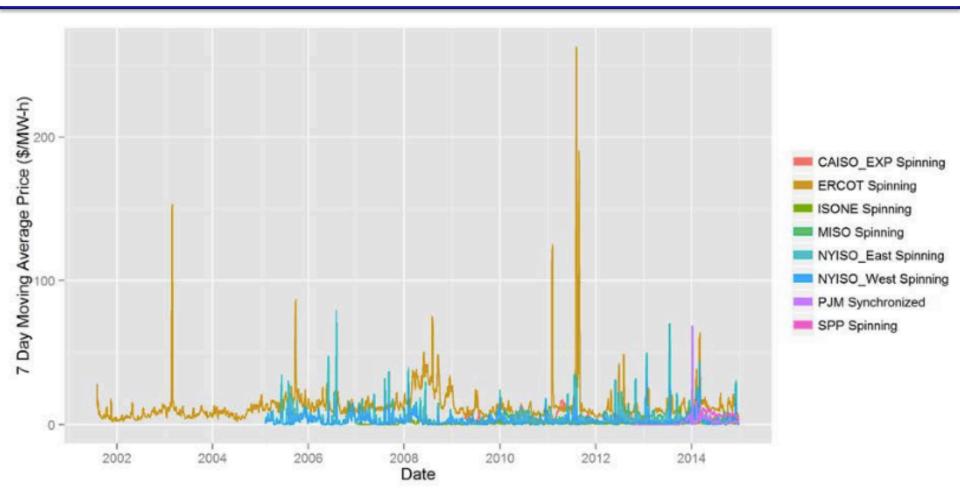



Figure 9-1 Seven-day moving average prices in each Regulation Reserves market

Argonne National Laboratory, Survey of U.S. Ancillary Services Markets, Jan. 2016 https://publications.anl.gov/anlpubs/2016/01/124217.pdf

System Control: U.S. Reserve Prices

Figure 9-5 Seven-day moving average prices in each Spinning Reserves market

Argonne National Laboratory, Survey of U.S. Ancillary Services Markets, Jan. 2016 <u>https://publications.anl.gov/anlpubs/2016/01/124217.pdf</u>

of U.S. Ancillary Services Markets, Jan. 2016 2016/01/124217.pdf **RUTGERS**

NEPOOL PARTICIPANTS COMMITTEE JUN 23-24, 2020 MEETING, AGENDA ITEM #7

> Edward J. Bloustein School of Planning and Public Policy

NEPOOL PARTICIPANTS COMMITTEE JUN 23-24, 2020 MEETING, AGENDA ITEM #7

Balancing Supply and Demand: Different Resources Provide Different Capabilities

	Essential Reliability Services (Frequency, Voltage, Ramp Capability)					Fuel Assurance		JUN	Readelity		TING, AGENDA ITEM #7		
 Exhibits Attribute Partially Exhibits Attribute 	Frequency Response	Voltage Control					ay Minutus		Minutes				
- Does Not Exhibit Attribute	(Inertia & Primary)					in Output)			ats For D	Time < 30 Minutes		McClone Hours)	lactor 1
Resource Type			Replation	Contingency Reserve	Load Following	Not Fuel Limited (> 72 hours at Eco. Max Output)	On site Fool Investory	Cycle	Short Min, Run Time (< 2 hrs.)/ Multiple Starts Par Day	Startup/ Notification 1	Black Start Capable	No Environmental Restrictions (That Would Limit Ran Hours)	Equivalent Austrability Factor
Hydro						0	•	۲			۲	•	۲
Natural Gas - Combustion Turbine			•		•	۲	0	۲		۲		•	•
Oil -Steam						۲		۲	0	0	0	0	•
Coal - Steam								•	0	0	0	•	•
Natural Gas - Steam						۲	0		0	0	۲	•	•
Oil/ Diesel - Combustion Turbine			0		0	0		۲	۲	۲		0	•
Nuclear	\bigcirc		0	0	\bigcirc			0	0	0	0	•	۲
Battery/ Storage	\bigcirc	\bigcirc			0	0	0			۲	•		۲
Demand Response	0	0	•	•	•	•	•		۲	۲	0	۲	۲
Solar	•	•	0	0	•	0	0	۲	۲	۲	0		۲
Wind	\bigcirc	•	0	0	•	0	0	۲		۲	0	•	۲

From Electricity Ancillary Services Primer, Reishus Consulting, August 2017 citing PJM Evolving Resource Mix and System Reliability, 2017 http://nescoe.com/wp-content/uploads/2017/11/AnxSvcPrimer_Sep2017.pdf

Balancing Supply and Demand: High-level Considerations

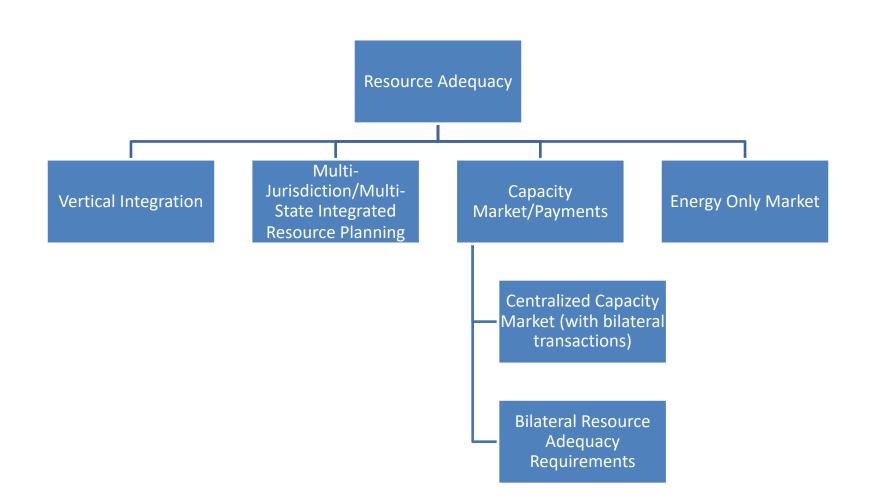
Political and Policy Objectives	Policy Development	Policy Options			
Reliability	Political negotiation with stakeholders (including	Resource adequacy policy (prices or quantities)			
Efficient grid operations	system operator)				
		Operational planning			
Rapid deployment of	Governance of system				
renewable resources	operator Security consult commit		Co- Optimization		
		Security constrained economic dispatch	and Opportunity Cost		
		Ancillary services	Pricing		

Balancing Supply and Demand: International Examples

Means	Description
Flexible resources	Need sufficient incentives or regulatory approaches to ensure sufficient flexible are available when needed
Grid codes	Requirements for performance standards; needs to be enforced and resources tested for compliance
Demand response	Real-time demand response requires proper metering and information systems
Unit commitment/scheduling intervals	Include variable energy resources forecasting in unit commitment; submission of schedules closer to real- time; seamless integration of Supervisory Control and Data Acquisition (SCADA) and Energy Management System (EMS) systems

Operating and Planning Electricity Grids with Variable Renewable Generation, Madrigal and Porter, World Bank, 2013 <u>https://openknowledge.worldbank.org/bitstream/handle/10986/13103/757310PUB0EPI0001300pubdate02023013.pdf?sequence=1&isAllowed=y</u>

Based upon detailed case studies of China, Germany & Spain


Balancing Supply and Demand: International Examples, con't

Means	Description
Transmission planning for renewables	Proper planning and cost allocation needed so that the best combination of transmission and renewables are developed first
Improved planning practices for transmission and supply adequacy	Development of cost-effective solutions and probabilistic planning analyses and criteria
Renewable energy curtailments	Proper definition of the rules and conditions under which variable energy resources will be curtailed as part of the grid code; renewable energy contracts need to be designed to account for curtailments and payment implications
Advances in variable	Track and incorporate technological advances that
energy resources	variable energy resources can provide ancillary services

Operating and Planning Electricity Grids with Variable Renewable Generation, Madrigal and Porter, World Bank, 2013 Edward J. Bloustein School https://openknowledge.worldbank.org/bitstream/handle/10986/13103/757310PUB0EPI0001300pubdate02023013.pdf?sequence=1&isAllowed=V

👷 🏢 KUIGERS

Balancing Supply and Demand: Resource^{20 MEETING, AGENDA ITEM #7} Adequacy

From Capacity Markets at a Crossroads, Bushnell, Flagg & Mansur, April 2017, with modifications https://hepg.hks.harvard.edu/files/hepg/files/wp278updated.pdf

38

Balancing Supply and Demand: Resource Adequacy

ISO	Procurement Structure	RA Requirement	Timeline	Price Formation	Market Power Mitigation	Resource Obligations	Performance Incentives
ERCOT	Energy-only market that primarily relies on scarcity pricing mechanisms.	No requirement. 'Target' reserve margin is 13.75%	n/a	Operating Reserve Demand Curve adder and Reliability Deployment Adder. Use LOLE ¹⁶ and value of lost load.	System offer cap set to \$9,000/MWh. Mechanism in place to reduce offer cap if costs become excessive.	n/a	n/a
CAISO	Bilateral RA Requirement: met through bilateral contracts and self-supply.	System requirements set by LRAs (most at 15% reserve margin). Local and flexible requirements determined by ISO.	Yearly and monthly requirements.	Largely unknown. Backstop capacity procured by ISO via auction, paid as bid.	n/a Backstop procurement auction subject to soft- offer cap.	Must-offer obligations vary by capacity type but involve scheduling and bidding in Day-Ahead and Real-Time markets.	Average. Incentive mechanism assesses adherence to must-offer obligation. No established performance criteria.
SPP	Bilateral RA Requirement: Procurement is through bilateral contracts and self- supplied.	Planning reserve margin set at 12%.	Peak summer season.	Unknown.	n/a	None.	None.
MISO	Bilateral RA Requirement: LSEs may use bilateral contracts, or procure through a voluntary centralized Planning Resource Auction (PRA)	System-wide and zonal requirements set with LOLE study. The 2015 required reserve margin set to 14.7%	Auction held immediately prior to delivery year. Proposal for 3-yr forward auction for competitive retail states.	Currently demand curve is vertical at RA requirement. Proposal for sloped demand curve for competitive retail states.	Participants may self- schedule or submit \$0 offers in PRA. Offer cap set at 2.7*zonal CONE. ¹⁷	Must offer in Day-Ahead Energy and Reserve markets and first post Day- Ahead RAC process every hour.	Weak. MISO monitors must offer obligation but no formal incentive structure. Forced outages will reduce capacity counted.
ISO-NE	Centralized capacity market: called the Forward Capacity Auctions (FCA) Centralized capacity Market	System and local requirements set with LOLE study.	3-years in advance with additional auctions held annually and monthly.	Sloped demand curve, uses LOLE and CONE.	Minimum competitive offer prices. Requests to exit reviewed by market monitor.	Must offer into energy market and schedule maintenance with ISO	Strong. New pay-for-performance design integrates performance into capacity payment.
NYISO	Centralized capacity market: called the Installed Capacity Auctions.	System and local requirements set with LOLE study. Current reserve margin is roughly 17%.	Auctions held immediately prior to and during 6 month capability period.	Sloped demand curve, uses capacity requirement and CONE.	Market power tests determine when to impose offer floors and caps	Must schedule or bid in Day-Ahead market.	Weak. No performance mechanism but forced outages reduce capacity counted.
РЈМ	Centralized capacity market: called the Reliability Pricing Model (PRM)	System and local requirements set with LOLE study.	Base auction 3-years in advance. Incremental auctions held up to delivery year.	Slopped Demand Curve, based on requirement, net- CONE & demand reservation prices.	Minimum offer price set at net asset class CONE.	Must offer into Day-Ahead market.	Strong. New Capacity Performance product focuses on emergency events.

Capacity Markets at a Crossroads, Bushnell, Flagg & Mansur, April 2017, Table 3 <u>https://hepg.hks.harvard.edu/files/hepg/files/wp278updated.pdf</u>

39

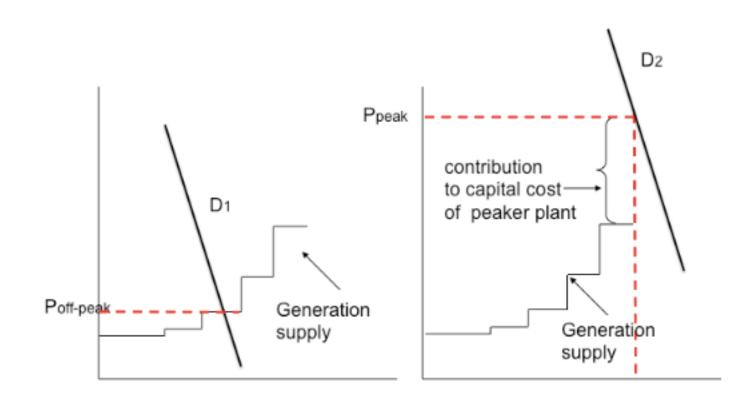
Balancing Supply and Demand: Resource Adequacy

	Procurement	RA		Price	Market Power	Resource	Performance		
ISO	Structure	Requirement	Timeline	Formation	Mitigation	Obligations	Incentives		
ERCOT	Energy-only market that primarily relies on scarcity pricing mechanisms.	No requirement. 'Target' reserve margin is 13.75%	n/a	Operating Reserve Demand Curve adder and Reliability Deployment Adder. Use LOLE ¹⁶ and value of lost load.	System offer cap set to \$9,000/MWh. Mechanism in place to reduce offer cap if costs become excessive.	n/a	n/a		
CAISO	Bilateral RA Requirement: met through bilateral contracts and self-supply.	System requirements set by LRAs (most at 15% reserve margin). Local and flexible requirements determined by ISO.	Yearly and monthly requirements.	Largely unknown. Backstop capacity procured by ISO via auction, paid as bid.	n/a Backstop procurement auction subject to soft- offer cap.	Must-offer obligations vary by capacity type but involve scheduling and bidding in Day-Ahead and Real-Time markets.	Average. Incentive mechanism assesses adherence to must-offer obligation. No established performance criteria.		
SPP	Bilateral RA Requirement: Procurement is through bilateral contracts and self-	Resource adequacy requirements and							
	supplied.	market st	ructure af	fect the ar	mount and	1			
MISO	Bilateral RA Requirement: LSEs may use bilateral contracts, or procure through a voluntary centralized Planning Resource Auction (PRA)	flexibility of resources and load that are available to balance supply and demand							
ISO-NE	Centralized capacity market: called the Forward Capacity Auctions (FCA) Centralized capacity Market	System and local requirements set with LOLE study.	3-years in advance with additional auctions held annually and monthly.	Sloped demand curve, uses LOLE and CONE.	Minimum competitive offer prices. Requests to exit reviewed by market monitor.	Must offer into energy market and schedule maintenance with ISO	Strong. New pay-for-performance design integrates performance into capacity payment.		
NYISO	Centralized capacity market: called the Installed Capacity Auctions.	System and local requirements set with LOLE study. Current reserve margin is roughly 17%.	Auctions held immediately prior to and during 6 month capability period.	Sloped demand curve, uses capacity requirement and CONE.	Market power tests determine when to impose offer floors and caps	Must schedule or bid in Day-Ahead market.	Weak. No performance mechanism but forced outages reduce capacity counted.		
PJM	Centralized capacity market: called the Reliability Pricing Model	System and local requirements set with LOLE study.	Base auction 3-years in advance. Incremental auctions held up to	Slopped Demand Curve, based on requirement, net- CONE & demand	Minimum offer price set at net asset class CONE.	Must offer into Day-Ahead market.	Strong. New Capacity Performance product		

reservation prices.

Capacity Markets at a Crossroads, Bushnell, Flagg & Mansur, April 2017, Table 3 <u>https://hepg.hks.harvard.edu/files/hepg/files/wp278updated.pdf</u>

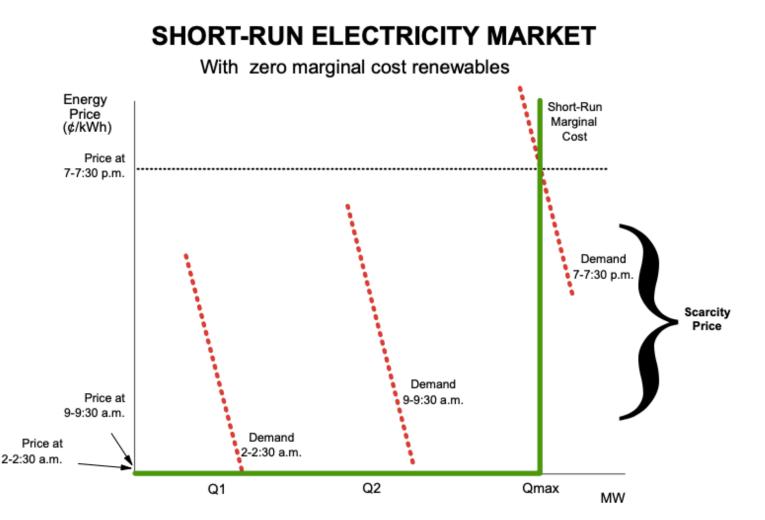
(PRM)


delivery year.

focuses on emergency

events.

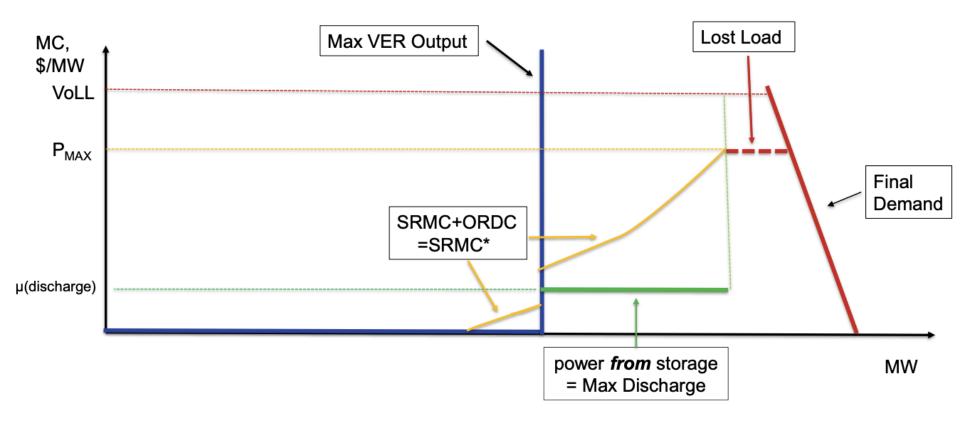
Balancing Supply and Demand: Scarcity 4, 2020 MEETING, AGENDA ITEM #7 Pricing, Today



"Off-Peak" "Peak" Figure 2: Scarcity Pricing Example

Capacity Markets at a Crossroads, Bushnell, Flagg & Mansur, April 2017 https://hepg.hks.harvard.edu/files/hepg/files/wp278updated.pdf

Balancing Supply and Demand: Pricing³⁻⁴⁴⁹⁷ terns, Agenda ITEM #7 Variable Energy Resources



Electricity Market Design and the Green Agenda, William Hogan, June 12, 2018 <u>http://iaee2018.com/wp-content/uploads/2018/09/P2Hogan2018ppt.pdf</u>

Balancing Supply and Demand: Pricing³-Witting, AGENDA ITEM #7</sup> Variable Energy Resources, Storage & Shortage

Very High Stress Equilbrium, $P = P_{MAX}$

R. Schmalensee, Decarbonized Electric Power Systems: Some Preliminary Results, Feb. 10, 2020 https://www.belfercenter.org/sites/default/files/Decarbonized_Electric_Power_Systems.pdf

Balancing Supply & Demand: Examples of Tradeoffs

- 1. Prescribing ancillary capabilities of variable energy resources provides more grid flexibility but allocates costs to ratepayers and may require changes to renewable procurement mechanisms
- 2. Separate mechanisms for resources adequacy and variable energy resources allow for different decisionmakers to achieve their objectives but risks inconsistency and incompatibility in actual operations
- 3. High energy prices may balance supply and demand but cause both political concerns, operational challenges and pricing issues

- 1. Each of the three types of problems: political economy, economic/regulatory, and engineering must be addressed
- 2. These three problems may be solved inconsistently or incompletely and compounded by multiple and overlapping jurisdictions
- 3. Unless they are addressed in an integrated and consistent manner, political, economic, and reliability difficulties are likely to occur
- 4. Decisionmakers pursue their own strategic objectives
- 5. Important tradeoffs exist between different approaches
- 6. Much other work needs to be done to improve the electric power sector in conjunction with decarbonization efforts

QUESTIONS AND COMMENTS

Annotated References

Below is an annotated list of some of the references used in this presentation.

International Energy Agency, 2017, Status of Power System Transformation 2017: System Integration and Local Grids, <u>https://webstore.iea.org/download/direct/298</u> Covers many countries and includes case studies of Australia, Indonesia, Mexico and South Africa.

Kroposki et al, Achieving a 100% Renewable Grid, IEEE Power & Energy Magazine, March/April 2017, <u>http://ipu.msu.edu/wp-content/uploads/2018/01/IEEE-Achieving-a-100-Renewable-Grid-2017.pdf</u> This article provides a non-technical description of the technical issues of operating a grid with 100% renewables.

NREL, Eastern Renewable Generation Integration Study, August 2016, <u>https://www.nrel.gov/docs/fy16osti/64472.pdf</u> Detailed study of up to 30% renewable generation in the eastern interconnection.

Reishus Consulitng LLC, Electricity Ancillary Services Primer, August 2017, <u>http://nescoe.com/wp-</u> <u>content/uploads/2017/11/AnxSvcPrimer_Sep2017.pdf</u> Prepared for the New England States Committee on Electricity (NESCOE).

